
Wireguard OpenBSD client
In this post, I will be installing Wireguard on my OpenBSD laptop to be able to connect to my
personal services over a secure tunnel.

OpenBSD client setup
Install Wireguard
Wireguard tools are officially included in the OpenBSD repository, but are usually a bit outdated. To
install them, type:

Prepare directories
1. Switch to root so you don't have to type doas over and over again, also the config directory will
only be readable by root .

2. Set umask to 077 to allow rw access to root only.

3. Create the config folder and its subdirectories.

Generate keys
1. Move to the keys directory and generate client's public and private key. You will put the public
key to the server config later, private key will never leave the device.

$ doas pkg_add wireguard-tools

As usual, OpenBSD provides excellent documentation about Wireguard (man wg), use it if
necessary.

$ doas su

(root)$ umask 077

(root)$ mkdir /etc/wireguard/{keys,psk}

https://man.openbsd.org/wg.4

The wg genkey command generates a random private key in base64 and prints it to standard
output (terminal). The output is instead redirected to tee , which both prints it to stdout (terminal),
but also saves it into a file wg0_private.key . The private key printed to stdout is then piped (|
symbol) to wg pubkey , which calculates the public key and prints it in base64 to stdout from a
corresponding private key (the one we redirected to it with the pipe), lastly redirect the public key
from stdout to a file wg0_public.key

You will now have two files in /etc/wireguard directory. One containing public, the other private key.

2. Create client config file (wg0.conf) in /etc/wireguard . Make sure you still have umask set to 077 .

3. Open the file and make it look like this. Replace IPs with the ones you are planning to use. [Peer]
section specifies the server's part of config. AllowedIPs should point to the interal IP of the server
within the Wireguard tunnel. PublicKey should contain the servers public key. PresharedKey will be
generated on the server in a moment. Actually, you can generate this key on the client and then
copy it to the server or vice versa, it's up to you. Either way, because it's a shared secret, it has to
be present in both configuration files – on the server and the client.

Server setup
We assume that the server is already set up and we are just adding a new client. For a guide how
to setup a server, head over here.

1. Go to /etc/wireguard/psk and generate the preshared key. Ideally, switch to 077 umask again.

(root)$ cd /etc/wireguard/keys
(root)$ wg genkey | tee wg0_private.key | wg pubkey > wg0_public.key

wg0_private.key wg0_public.key

(root)$ touch wg0.conf

[Interface]
PrivateKey = GeneratedPrivateKey_from_wg0_private.key
Address = 10.20.20.5/29

[Peer]
PublicKey =
PresharedKey =
AllowedIPs = 10.20.20.1/32
Endpoint = publicIP:port

https://selfhostedfuture.xyz/books/wireguard-vpn/page/ssh-over-wireguard-vpn

2. Add the following [Peer] block to the server wg0.conf . Replace PublicKey with the client public
key (wg0_public.key). Copy the generated preshared key from openbsd_client.psk to PresharedKey in
both the server and client config.

Start the Wireguard interface
1. Go back to the OpenBSD client and bring up the Wireguard interface manually:

2. Now check ifconfig and confirm connectivity to the server.

Start Wireguard on boot
In order to start Wireguard automatially after boot you need to create a rc.d service script that
allows you to not only start the service on boot, but also start and stop it on demand.

On OpenBSD the systems daemon configuration database is located in rc.conf and rc.conf.local file.

Create script

1. Open /etc/rc.conf.local file and add a new line containing wg_quick_flags=wg0 – wg0 is the name of
the interface.

(root)$ cd /etc/wireguard/psk
(root)$ wg genpsk > openbsd_client.psk

[Peer]
PublicKey =
PresharedKey =
AllowedIPs = 10.20.20.5/32

$ doas wg-quick up wg0

It is recommended to leave rc.conf untouched and instead create and edit a new rc.conf.local
file.

IMPORTANT! The following scripts were made by Mark Vainomaa
<mikroskeem@mikroskeem.eu> , not me. The original script can be found here.

https://web.archive.org/web/20211009225432/https://gist.github.com/mikroskeem/53a6fe4a710ee74a5421399c3e9f62c4
https://web.archive.org/web/20211009225432/https://gist.github.com/mikroskeem/53a6fe4a710ee74a5421399c3e9f62c4

rc.conf.local

2. Create new file wg_quick in /etc/rc.d . Paste the following script to it. It has a few comments to
make it easier to understand.

wg_quick

apmd_flags=-A
sshd_flags=NO
xenodm_flags=
wg_quick_flags=wg0

#!/bin/ksh
#
Author: Mark Vainomaa <mikroskeem@mikroskeem.eu>

daemon="/usr/local/bin/wg-quick"

rc_reload=NO

. /etc/rc.d/rc.subr

pexp_wg="^/usr/local/bin/bash ${daemon} up ${daemon_flags}"
pexp_route="route -n monitor"

rc_check() {
 # Check the pid of wg-quick script whose parent is init
 pid="$(pgrep -P 1 -f "${pexp_wg}")"
 if [-z "${pid}"]; then
 return 1
 fi

 # Check for a stale wg-quick script process handling
 # only `route -n monitor`
 if [! -z "$(pgrep -P "${pid}" -f "${pexp_route}")"]; then
 # TODO: uh-oh, stale wg-quick & route monitor; what should we do?
 return 1
 fi

 return 0

}

rc_start() {
 ${daemon} up ${daemon_flags}
}

rc_stop() {
 ${daemon} down ${daemon_flags}

 # TODO: remove this when wg-quick gets fixed
 # this is here to kill 'route -n monitor' which
 # keeps wg_quick rc script blocked on this function
 pid="$(pgrep -P 1 -f "${pexp_wg}")"
 pid2="$(pgrep -P "${pid}" -f "${pexp_wg}")"
 rpid="$(pgrep -P "${pid2}" -f "${pexp_route}")"

 # Get rid of the stale `route -n monitor' process
 if [! -z "${rpid}"] && kill -0 "${rpid}"; then
 kill -15 "${rpid}"
 fi
}

rc_pre() {
 # Error out if flags are empty
 if [-z "${daemon_flags}"]; then
 echo "ERROR: daemon flags cannot be empty and must contain WireGuard tunnel configuration name!"
 return 1
 fi

 # Pass flags through basename so users couldn't do
 # something like `../../x' and other dumb stuff.
 configname="$(basename ${daemon_flags})"

 # Check if WireGuard's configuration file exists
 if [! -f "/etc/wireguard/${configname}.conf"]; then
 echo "ERROR: file \`/etc/wireguard/${configname}.conf' does not exist!"
 return 1
 fi

 # Check if tunnel with given name is already running

3. Adjust permissions to the script – set them to 555 (rx-rx-rx)

Test script
1. You can now test the script to see if it starts Wireguard.

2. Also try to stop the service (one of the problems I ran into when I tried to simplify the script)

Enable wg_quick
1. To make Wireguard start on boot, enable the service script we have just created.

2. Check that wg_quick is actually enabled.

 if [-f "/var/run/wireguard/${configname}.name"]; then
 echo "ERROR: tunnel \`${configname}' is already running!"
 return 1
 fi
}

rc_cmd $1

$ doas chmod 555 /etc/rc.d/wg_quick

$ doas rcctl start wg_quick
wg_quick(ok)

$ doas rcctl stop wg_quick
wg_quick(ok)

Keep in mind that Wireguard runs as root , therefore you need elevated privileges to start or
stop the script.

$ doas rcctl enable wg_quick

$ rcctl ls on
cron
...
wg_quick
xenodm
...

That's it, now reboot your device to test if Wireguard starts and you are done.

Revision #18
Created 5 October 2021 00:05:01 by Marek
Updated 10 October 2021 02:44:19 by Marek

