
SSH over Wireguard VPN
Managing servers on the public internet brings a lot of security threats with it. RDP is so bad it isn't
recommended to even expose it to the public internet. With SSH, things are a bit more safe, but
only after you perform a set of SSH hardening tasks, e.g.:

Change default SSH port (security through obscurity, only helps reduce number of bots
attempting to connect)
Disable root login
Disable password login, only use PubKey authentication
Setup 2FA for SSH
etc.

In order to add another layer of protection, you can setup VPN to protect your SSH connections
(while leaving your website available to the public internet).

Wireguard Server setup

Install Wireguard on the server
Debian offers fairly outdated version of Wireguard in the official stable repository. At the time of
writing, stable has 20210223 , while testing has 20210424 . You can check available version with apt
.

Output:

Having SSH over VPN shouldn't make you forget about the aforementioned SSH hardening
steps. VPN is just one of them.

This guide uses Debian 11 as the server and Windows 10 as the client.

$ apt-cache policy wireguard

wireguard:
 Installed: (none)
 Candidate: 1.0.20210223-1
 Version table:
 1.0.20210223-1 500

Install from stable
You can decide if you want to use the stable or testing version. To install stable , simply type:

Install from testing

To install from the testing repo, you have to perform the steps shown HERE. TLDR, add testing to
/etc/apt/sources.list , adjust apt preferences in /etc/apt/preferences and update apt . Once you have
enabled the testing repository with appropriate priorities, you can install Wireguard. To see if the
preferences are set properly, try to see what apt would install. By default, everything should be
installed from stable , unless specified otherwise.

Candidate line shows what would be installed.

Now specify that you want to install from testing :

Candidate should now point to the newer version:

 500 https://ftp.sh.cvut.cz/debian bullseye/main amd64 Packages

$ sudo apt install wireguard

$ apt-cache policy wireguard

wireguard:
 Installed: (none)
 Candidate: 1.0.20210223-1
 Version table:
 1.0.20210424-1 -10
 -10 http://deb.debian.org/debian testing/main amd64 Packages
 1.0.20210223-1 900
 900 https://ftp.sh.cvut.cz/debian stable/main amd64 Packages

$ apt-cache policy -t testing wireguard

wireguard:
 Installed: (none)
 Candidate: 1.0.20210424-1
 Version table:
 1.0.20210424-1 990
 990 http://deb.debian.org/debian testing/main amd64 Packages
 1.0.20210223-1 900

https://selfhostedfuture.xyz/books/debian/page/enable-testing-repo-in-stable-debian-11

Finally, to install from testing (-t to specify repository to install from), type this:

Generate keys
Regardless of the version you have installed, it's time to create the configuration, directories and
keys. We will be working in a restricted directory (only readable by root), so elevate the shell:

Create directories
We need some place to store our public, private and preshared keys. All of these should be located
in /etc/wireguard directory and only readable by root . The directory structure itself is up to you, I
prefer having directory keys in /etc/wireguard for server public and private key and psk directory
for preshared keys.

Set umask to 077 to create files and directories only readable by root:

Create the aforementioned directories in /etc/wireguard :

Generate server keys
Navigate to the /etc/wireguard/keys directory and generate the keys.

The wg genkey command generates a random private key in base64 and prints it to standard
output (terminal). The output is instead redirected to tee , which both prints it to stdout (terminal),
but also saves it into a file wg0_private.key . The private key printed to stdout is then piped (|
symbol) to wg pubkey , which calculates the public key and prints it in base64 to stdout from a
corresponding private key (the one we redirected to it with the pipe), lastly redirect the public key
from stdout to a file wg0_public.key

You will now have two files in /etc/wireguard directory. One containing public, the other private key.

 900 https://ftp.sh.cvut.cz/debian stable/main amd64 Packages

$ sudo apt install -t testing wireguard

$ sudo su
(root)$

(root)$ umask 077

(root)$ mkdir keys psk

(root)$ cd keys
(root)$ wg genkey | tee wg0_private.key | wg pubkey > wg0_public.key

Create server configuration
Still under umask 077 and in the root shell, create a config file in /etc/wireguard directory. The name
of the file will be used as the name of the interface.

Replace server_private_key with the private key of your server (content of wg0_private.key in
/etc/wireguard/keys). ListenPort is the port you want Wireguard to listen on and Address specifies the
subnet for the Wireguard tunnel. I chose /29 due to small subnet size, because more hosts aren't
necessary.

Client Wireguard setup
Download and install Wireguard
Download the Windows Installer from the official Wireguard website.

Run the wireguard-installer.exe and after a few moments, this window should appear:

wg0_private.key wg0_public.key

(root)$ touch wg0.conf

[Interface]
Address = 10.20.20.1/29
ListenPort = 51895
PrivateKey = server_private_key

https://www.wireguard.com/install/
https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/Pszc2Mx2k7dWqsts-image-1631824881800.png

Click the arrow next to Add Tunnel and select Add empty tunnel...

Wireguard will automatically generate a private and public key for this client.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/Nogy5sCsrv8mKWcK-image-1631826129100.png
https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/BUKXod7ybV7tb8j4-image-1631832115700.png

*note: all keys shown will be destroyed afterwards and are only used for demonstration purposes

Configure the client
Under the PrivateKey line, add Address , which will be the address of the Wireguard client within the
Wireguard tunnel.

Even though I am refering to the server as Wireguard server and my management station as the
client, the truth is Wireguard doesn't care about that. In it's eyes, both are on the same level
and there's no difference between them, they are both peers.

To configure the server, add [Peer] block to the client config.

PublicKey – Copy the content of /etc/wireguard/wg0_public.key to this line
AllowedIPs – IP of the server within the tunnel, use /32 to allow only the server and not the
whole subnet

[Interface]
PrivateKey = private_key
Address = 10.20.20.2/29

[Peer]
PublicKey = server_public_key
AllowedIPs = 10.20.20.1/32
Endpoint = publicIP:port

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/lIHWxQroeVjGOpaR-image-1631832294700.png

Endpoint – Public IP of the server and port where Wireguard is running (same as ListenPort
in the server wg0.conf)

The entire client config should now look like this:

Add client to the server configuration
To finish setting up the tunnel, add the client's public key and IP address to the wg0.conf in
/etc/wireguard .

You have to copy the public key from the client to the server config. Make sure you don't switch
up the public and private keys. Always copy the public key only! The private key should
never leave the device it was created on.

wg0.conf will look something like this right now:

Restart interface to refresh config
After editing wg0.conf , always run wg-quick to restart the interface, otherwise the changes to the
configuration won't propagate.

[Interface]
PrivateKey = private_key
Address = 10.20.20.2/29

[Peer]
PublicKey = server_public_key
AllowedIPs = 10.20.20.1/32
Endpoint = publicIP:port

[Peer]
PublicKey = public_key_from_client
AllowedIPs = 10.20.20.2/32

[Interface]
Address = 10.20.20.1/29
ListenPort = 51895
PrivateKey = server_private_key

[Peer]
PublicKey = public_key_from_client
AllowedIPs = 10.20.20.2/32

(Optional) Secure with Preshared keys
To add additional level of security, you can generate prehared keys for the client, which act as a
shared secret and provide another layers of cryptographical security.

Generate Preshared keys
Navigate to the /etc/wireguard/psk directory, set umask to 077 and generate the key (still in the
root shell):

Add to server config
Open wg0.conf and add PresharedKey to the [Peer] block for the client:

Add to client config
Because it's a shared secret, it has to be added both to the server and to the client. Also add
Presharedkey to the [Peer] block.

$ sudo wg-quick down wg0
[#] ip link delete dev wg0

$ sudo wg-quick up wg0
[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.20.20.1/29 dev wg0
[#] ip link set mtu 1420 up dev wg0

The tunnel should be now set up. Try pinging the server from the client. If it isn't working,
make sure firewall like iptables isn't blocking the communication and you have ICMP
enabled.

(root)$ cd /etc/wireguard/psk
(root)$ umask 077
(root)$ wg genpsk > windows10_client.psk

[Peer]
PublicKey = public_key_from_client
PresharedKey = preshared_key
AllowedIPs = 10.20.20.2/32

Move SSH to Wireguard interface
Test connection over Wireguard
Right now, SSH is listening on 0.0.0.0 which means all available interfaces. This means it should be
listening on the Wireguard interface as well. Try connecting over the Wireguard IP.

Bind SSH to Wireguard interface
Open /etc/ssh/sshd_config and set ListenAddress to the IP address of the Wireguard interface (wg0).

/etc/ssh/sshd_config

[Interface]
PrivateKey = private_key
Address = 10.20.20.2/29

[Peer]
PublicKey = server_public_key
PresharedKey = preshared_key
AllowedIPs = 10.20.20.1/32
Endpoint = publicIP:port

> ssh user@10.20.20.1 -p SSHport

The authenticity of host '[10.20.20.1]:port ([10.20.20.1]:port)' can't be established.
ECDSA key fingerprint is SHA256:fJOIGJoidhifdshug543fhsdof8h43hfo4.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[10.20.20.1]:port' (ECDSA) to the list of known hosts.

$ ip a
...
 wg0: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1420 qdisc noqueue state UNKNOWN group default qlen 1000
 link/none
 inet 10.20.20.1/29 scope global wg0
 valid_lft forever preferred_lft forever

$ sudo vi /etc/ssh/sshd_config

ListenAddress 10.20.20.1

Restart SSH and check:

(Optional) Move Nginx to public IP only
The website (Nginx) is still listening on all interfaces on ports 80 and 443, but we only need it on
the public IP, therefore:

SSH on Wireguard IP ONLY
Nginx on public IP ONLY

Open /etc/nginx/conf.d/name_of_your_config.conf and add the public IP of your server in front of port on
the listen line. Both for 80 and 443.

to

Restart Nginx:

Check with netstat that Nginx is listening on the correct IP:

$ sudo systemctl restart sshd

$ systemtl status sshd
...
Starting OpenBSD Secure Shell server...
Server listening on 10.20.20.1 port {ssh_port}.
Started OpenBSD Secure Shell server.

server {
 listen 443 ssl;

server {
 listen publicIP:443 ssl;

$ sudo systemctl restart nginx

$ sudo netstat -tulpn
...
tcp 0 0 publicIP:80 0.0.0.0:* LISTEN 27870/nginx: master
tcp 0 0 publicIP:443 0.0.0.0:* LISTEN 27870/nginx: master

Firewall setup
Wireguard tunnel is now fully established, SSH listens on the Wireguard interface, Nginx on the
public IP. Let's adjust the firewall (iptables). I use iptables-restore in combination with a configuration
file in /etc/iptables/rules.v4 . The file should look like this, explaining what each of the lines is for is out
of the scope of this guide, brief comment can be found on each line:

*filter

Drop forwarded traffic, we don't need that since we are not acting as a router
:FORWARD DROP [0:0]

Accept all outgoing connection now, later it will be restricted
:OUTPUT ACCEPT [0:0]

Block all incoming traffic
:INPUT DROP [0:0]

Do not block localhost
-A INPUT -i lo -j ACCEPT

Allow established and related incoming connections
-A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

Allow SSH on the port that it's running on
-A INPUT -i wg0 -p tcp -m tcp --dport SSH_PORT -j ACCEPT

Allow web traffic
-A INPUT -i eth0 -p tcp -m tcp --dport 80 -j ACCEPT
-A INPUT -i eth0 -p tcp -m tcp --dport 443 -j ACCEPT

Allow Wireguard on public IP
-A INPUT -p udp -m udp --dport WIREGUARD_PORT -j ACCEPT

Allow ping on all interfaces
-A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT

Commit rules
COMMIT

Commit rules with iptables-restore :

Enable Wireguard on startup
Because we have limited SSH only to our VPN, we need it running all the time to access the server.
In the current state, if the server restarts, Wireguard won't start up and we won't be able to
connect.

Create wg0.service
I am running Debian where services are managed by systemd. Fortunately, we don't have to create
a Unit file from scratch, just issue one command:

Reload daemon service to apply changes:

Make sure Wireguard starts before SSH
If you had tried to reboot right now, you would find out that you cannot connect. That is because
SSHd would most likely try to start before Wireguard interface is ready. This will fail, because it
would try binding to an interface that doesn't exist yet. To fix this, we would need to edit the SSHd
service Unit file:

On the After line, add wg-quick@wg0.service to make sure SSHd starts after wg-quick@wg0.service .

$ sudo iptables-restore /etc/iptables/rules.v4

That's it, you now have SSH secured inside of a VPN tunnel and the website is still accessible
over the public internet.

$ sudo systemctl enable wg-quick@wg0.service

Created symlink /etc/systemd/system/multi-user.target.wants/wg-quick@wg0.service → /lib/systemd/system/wg-
quick@.service.

$ sudo systemctl daemon-reload

$ sudo systemctl edit --full sshd

After=network.target auditd.service wg-quick@wg0.service

mailto:wg-quick@wg0.service

You can also make another adjustment by adding the line Requires and specifying the wg0 virtual
interface like this:

Restart SSHd

Requires=sys-devices-virtual-net-wg0.device

$ sudo systemctl restart sshd

This will make sure SSHd starts after the Wireguard interface is ready.

If you have iptables as your firewall, make sure the rules are applied after startup, research
iptables-persistent to learn more.

Revision #12
Created 29 September 2021 01:02:55 by Marek
Updated 29 September 2021 13:14:36 by Marek

