
Part 6 – Final
troubleshooting
Enable Wireguard on startup
If we are going to move SSH into the Wireguard tunnel only, we need to make sure that the
interface is active even (or especially) after the server restarts. For that, we need to enable
Wireguard with systemd (or other init service). Fortunately it's pretty easy.

It's time to test all of our efforts – reboot the server and hope all configuration stays correct
afterwards. I like to do this, even though it's not neccessary, to save myself from unnecessary
headaches when the server unexpectedly restarts and it turns out that the configuration wouldn't
survive a schedules restart anyway.

Troubleshooting post-reboot
First thing I noticed is that Nginx was unable to start. Wireguard interface started up fine, but the
webserver didn't, even after manual service restart. Turns out Apache2 was starting as a service
and occupying port 80. I am too scared to completely purge Apache2 from the system, so I will just
stop and disable the service.

Time for another reboot. This time, Nginx failed to start again, but manual restart of the serviced
fixed it. This leads me to the idea, that Nginx is trying to start sooner than Wireguard and is unable
to bind to the Wireguard interface, because it does not exist yet.

Edit the nginx.service systemd file to make sure it starts after Wireguard had already brought up the
interface. You can either directly edit /lib/systemd/system/nginx.service file, but that is a bad practice,
because the file is usually overwritten with updates. The correct way to do this should be use sudo
systemctl edit --full nginx.service . Add wg-quick@wg0.service to the line end of the line with After= and
add a new line Requires=wg-quick@wg0.service before the previous one.

$ sudo systemctl enable wg-quick@wg0.service
$ sudo systemctl daemon-reload
$ sudo wg-quick down wg0
$ sudo systemctl start wg-quick@wg0

$ sudo systemctl stop apache2
$ sudo systemctl disable apache2

mailto:wg-quick@wg0

After another reboot, Nginx started on its own successfully. List systemd services to check if there
are any other issues.

$ systemctl list-units --type=service

 UNIT LOAD ACTIVE SUB DESCRIPTION
 console-getty.service loaded active running Console Getty
 dbus.service loaded active running D-Bus System Message Bus
● dnsmasq.service loaded failed failed dnsmasq - A lightweight DHCP and caching DNS server
 filtron.service loaded active running filtron
 ifupdown-pre.service loaded active exited Helper to synchronize boot up for ifupdown
 networking.service loaded active exited Raise network interfaces
 nginx.service loaded active running nginx - high performance web server
 ssh.service loaded active running OpenBSD Secure Shell server
 systemd-journal-flush.service loaded active exited Flush Journal to Persistent Storage
 systemd-journald.service loaded active running Journal Service
 systemd-logind.service loaded active running User Login Management
 systemd-modules-load.service loaded active exited Load Kernel Modules
 systemd-networkd.service loaded active running Network Service
 systemd-remount-fs.service loaded active exited Remount Root and Kernel File Systems
 systemd-resolved.service loaded active running Network Name Resolution
 systemd-sysctl.service loaded active exited Apply Kernel Variables
 systemd-sysusers.service loaded active exited Create System Users
 systemd-tmpfiles-setup-dev.service loaded active exited Create Static Device Nodes in /dev
 systemd-tmpfiles-setup.service loaded active exited Create Volatile Files and Directories
● systemd-udev-trigger.service loaded failed failed Coldplug All udev Devices
 systemd-udevd.service loaded active running Rule-based Manager for Device Events and Files
 systemd-update-utmp.service loaded active exited Update UTMP about System Boot/Shutdown
 systemd-user-sessions.service loaded active exited Permit User Sessions
 user-runtime-dir@1000.service loaded active exited User Runtime Directory /run/user/1000
 user@1000.service loaded active running User Manager for UID 1000
 uwsgi.service loaded active running LSB: Start/stop uWSGI server instance(s)
 wg-quick@wg0.service loaded active exited WireGuard via wg-quick(8) for wg0
 whoogle.service loaded active running Whoogle

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
28 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

It seems that dnsmasq also failed to start and I assume it was due to the same issue. Edit dnsmasq
with systemd again:

Both lines Requires and After already exist, so just add wg-quick@wg0.service on each of these
line:

This howerver, creates a paradox. DNSmasq requires wg-quick and starts after wg-quick , but
also before nss-lookup.target

Now examine wg-quick (systemctl cat wg-quick@wg0)

According to this configuraion – wg-quick starts after nss-lookup.target when DNSmasq has to start
before nss-lookup.target , while also starting after wg-quick , which has to start after nss-
lookup.targetand we got a loop. My solution to this is to simply comment out the DNSmasq
dependency of starting before nss-lookup.target .

This shouldn't break anything. Here's a sidenote about what nss-lookup.target even is:

$ sudo systemctl edit --full dnsmasq.service

[Unit]
Description=dnsmasq - A lightweight DHCP and caching DNS server
Requires=network.target wg-quick@wg0.service
Wants=nss-lookup.target
Before=nss-lookup.target
After=network.target wg-quick@wg0.service

...
After=network-online.target nss-lookup.target
Wants=network-online.target nss-lookup.target
...

$ sudo systemctl edit --full dnsmasq.service

[Unit]
Description=dnsmasq - A lightweight DHCP and caching DNS server
Requires=network.target wg-quick@wg0.service
Wants=nss-lookup.target
Before=nss-lookup.target
After=network.target wg-quick@wg0.service

mailto:wg-quick@wg0.service
mailto:wg-quick@wg0

A target that should be used as synchronization point for all host/network name service lookups.
Note that this is independent of UNIX user/group name lookups for which nss-user-lookup.target
should be used. All services for which the availability of full host/network name resolution is
essential should be ordered after this target, but not pull it in. systemd automatically adds
dependencies of type After= for this target unit to all SysV init script service units with an LSB
header referring to the "$named" facility.

The only thing that's left is to restore iptables at boot according to the config.

Setup iptables-persistent
There are multiple ways to make iptables rules persist accross reboots, but this seems to be the
prefered way.

Install iptables-persistent . It will ask you to save the current configuration to a file. We already have a
config file present and this would only overwrite our file, so say no.

Try rebooting and checking with sudo iptables -L -nv if the rules have been applied.

$ sudo apt install iptables-persistent
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
 netfilter-persistent
The following NEW packages will be installed:
 iptables-persistent netfilter-persistent
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Need to get 23.4 kB of archives.
After this operation, 91.1 kB of additional disk space will be used.
Do you want to continue? [Y/n] y

Revision #3
Created 22 September 2021 01:53:07 by Marek
Updated 22 September 2021 01:59:35 by Marek

