
Part 3 – Migrating services
on VPS
Moving network services to the WG interface
In order to move our network services to another interface, we first need to find out what exactly is
running on the server. We are interested in services and their listening ports. There are a few
commands to achieve this, e.g netstat , lsof , ss and nmap . Pick the one that works on your server,
so you don't have to install anything additional just for one command.

I will run netstat with a couple of flags grouped together, definitely easier than writing netstat -t -u -l
-p -n

-t lists TCP
-u lists UDP
-l shows only listening ports (omitted by default)
-p shows what program/service is running on each port
-n doesn't resolve IPs and hosts

$ netstat -tulpn

$ sudo netstat -tulpn

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 72/systemd-resolved
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 205/uwsgi
tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 98/nginx: master pr
tcp 0 0 127.0.0.1:4004 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:4005 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:5000 0.0.0.0:* LISTEN 77/python3
tcp 0 0 78.97.52.14:7985 0.0.0.0:* LISTEN 107/sshd: /usr/sbin
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 98/nginx: master pr
udp 0 0 127.0.0.53:53 0.0.0.0:* 72/systemd-resolved
udp 0 0 0.0.0.0:51895 0.0.0.0:* -
udp6 0 0 :::51895 :::* -

We can see a few services running on localhost (127.0.0.1), systemd-resolve localhost address (
127.0.0.53), example public IP (78.97.52.14) or on all interfaces (0.0.0.0). The only one that we will
care about now are 0.0.0.0 and 78.97.52.14 . From now on, everything will be very setup specific, so
I might even change the way I write, from we to me.

Binding Nginx to wg0 interface
The main service I want to move is Nginx. It runs all my websites on this server, so it would make
sense to migrate it first. Right now, it binds itself to all interfaces (0.0.0.0), so the websites should
technically be already accessible on the Wireguard IP of the server (10.20.20.1), but I want them to
be ONLY accessible on that interface.

Edit /etc/nginx/conf.d/name_of_config.conf and add the Wireguard IP address in front of ports in server
config block on the listen line, like this:

Before reloading or restarting Nginx, make sure Wireguard is running and the interface is up,
otherwise you will run into errors.

Reload Nginx to cause least interruption to the service.

Run netstat again to check if Nginx rebinded like I wanted:

server {
	listen 443 ssl http2;
 server_name youwebsite.com
 ...
 ...

to

server {
	listen 10.20.20.1:443 ssl http2;
 server_name youwebsite.com
 ...
 ...

$ sudo wg-quick up wg0

$ sudo systemctl reload nginx

$ sudo netstat -tulpn

When I try to access my websites now, it....doesn't work. But at least I perfectly know why and how
to fix it. Before, when I wanted to access mysite.com , I typed in mysite.com into the browser address
bar and my device requested a DNS record for mysite.com , which turned out to be a public IP
address of my server, or something else (depending on what I had set on my domain's registrar
website.) The DNS records still points to the public IP of my server, but Nginx isn't serving the
websites on that public IP anymore, but on the Wireguard one. How do I fix this?

Remove old DNS records
First of all, I will remove the old DNS A records with my registrar so that I don't forget. This varies
vastly from registrar to registrar, so you will have to figure it our on your own.

Point new DNS records to Wireguard
The problem is that I cannot just create new A records with the Wireguard IP (10.20.20.1), because
that's a reserved private IP, it wouldn't route anywhere. There are couple of ways to solve this:

1. Fill in the DNS Server field on both clients with a DNS server that will be able to provide
resolution for the private IP 10.20.20.1 . It could even be the 10.20.20.1 server itself, but
that means I would have to setup a DNS service on the server

2. Point clients (using the DNS Server field) to your local DNS server on your home network
and create the A records there. This method, however, will not work for roaming clients if
they connect to a different network (like mobile data).

3. Since it's just one server with two websites and two clients (this method wouldn't make
sense in larger deployments), I could just edit local DNS entries (hosts file) to avoid having
to configure a whole new DNS server, just for this single purpose.

I might look into a more sophisticated solution for DNS with split tunnel VPN later on, but for now I
will use the third method.

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 72/systemd-resolved
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 205/uwsgi
tcp 0 0 10.20.20.1:443 0.0.0.0:* LISTEN 23281/nginx: master
tcp 0 0 127.0.0.1:4004 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:4005 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:5000 0.0.0.0:* LISTEN 77/python3
tcp 0 0 78.97.52.14:7985 0.0.0.0:* LISTEN 107/sshd: /usr/sbin
tcp 0 0 10.20.20.1:80 0.0.0.0:* LISTEN 23281/nginx: master
udp 0 0 127.0.0.53:53 0.0.0.0:* 72/systemd-resolved
udp 0 0 0.0.0.0:51895 0.0.0.0:* -
udp6 0 0 :::51895 :::* -

Editing hosts file on Windows
Navigate to C:\Windows\System32\drivers\etc in the Windows Explorer and open the file named hosts
in Notepad and add the following lines into the file:

You might need to flush your DNS cache, but after saving the file, those two sites should now
resolve correctly, because Windows checks the local hosts file first by default.

Editing hosts file on Android
With Android, it's a little more complicated. Since its a mobile operating system designed to keep
the user away from all advanced configuration (but still better than iPhone in this regard), we
cannot simply open the hosts file and edit it. On a rooted phone you can, but on a regular one you
can't. We have basically two options

1. Use a pseudo-VPN app to re-route all traffic locally through a filter that allows you to add
custom DNS entries (I think Blokada can do that, apart from other things), except we
can't, because There can be only one VPN connection running at the same time. The existing interface

is deactivated when a new one is created. – developer.android.com Judging by one comment on
Reddit "I'm not entirely sure if this is how it works but using wireguard on a rooted phone
and a compatible kernel let's wireguard interact directly through the kernel. It doesn't
show up as an active VPN through android. So it may be possible to use that and a
conventional VPN approach to have two at once?" If this actually works, it should
theoretically be possible, but you need a rooted phone and it's probably in early stages.

2. Use the VPN server as a DNS server, since it's a roaming device anyway.
3. Use adb to pull the hosts file to PC, edit it and push it back to your Android device. That's

what I'll do.

How to get abd up and running is outside of this guide, there might be a guide for that on this site
at some point, but until then, refer to the internet.

Enable USB debugging in Android settings and connect it using a cable to you PC. Allow USB
debugging for this specific device and check that it's recongnized.

Transfer the hosts file from Android to your device:

10.20.20.1		mysite.com
10.20.20.1		mysite2.com

$.\adb.exe devices
List of devices attached
215e29da device

.\adb.exe pull /system/etc/hosts C:\Users\Marek\Desktop

https://developer.android.com/reference/android/net/VpnService.html

Open it with Notepad and add new lines containing IP and hostname in this format:

10.20.20.1		mysite.com
10.20.20.1		mysite2.com

Nope, this didn't work because pushing the file to a read-only file system doesn't work.
Christ, I have to root my phone as soon as I can...

Revision #3
Created 22 September 2021 01:52:18 by Marek
Updated 22 September 2021 01:58:20 by Marek

