
(FULL) Setting up Wireguard
on VPS
Introduction
You have one or more services running on a VPS somewhere. Because the VPS is sitting on the
internet with a public IP, the easiest way to access it is by exposing a port on that VPS where the
service is running. This, however, opens up a load of possible security issues. Because now anyone
on the internet can access the service just like you. This is perfectly fine in most cases, I mean, all
websites that you browse work this way – they are exposed so that people can access them. You
may have some form of 2FA or other application-level security method setup, but that doesn't help
mitigate vulnerabilities in the application itself. By limiting access to your application in the first
place, you covering a large part of the attack surface. All of this by leveraging the power of
VPN technology.

Setup Plan
Currently, all services on my VPS are listening on the server's public IP, which is the only network
interface together with localhost. Here's what we will do:

1. Install and setup Wireguard interface on the server
2. Setup clients
3. Stop all services and bind them only to the Wireguard interface
4. Adjust firewall rules according to our new setup

This guide assumes that you will access these services only from a few devices. If, for
example, you would like to provide your whole home network with access to the services
running on your VPS, you will have to do it a bit differently.

|‾‾‾|				|‾‾‾|
|						HOME						|				|					VPS						|
|Android Device------------------------------------->---WG tunnel--->											|
[Interface]		
eth0: 192.168.20.55 (private IP from DHCP at home)		Server
WG IP: 10.20.20.2/29		[Interface]
WG public key: 16f5das48wa1f684g1a489awg5a		eth0: 78.97.52.14 (example public IP)

*note: don't worry, the public and private keys in the diagram are just random placeholder values

Installation on the VPS
Since we are running Debian, we can get Wireguard from the official repository. I usually prefer
building software from source, but for the sake of this guide, I will go the easier route and simply
use the repo version.

The situation around Debian and Wireguard is a bit confusing. Debian is known to be stable but has
older packages. If you don't want to worry about anything, just install it from the stable repo:

However, if you are on Debian 10, Wireguard still isn't integrated into the 4.19 kernel, which means
the installation will bring the wireguard-dkms (Dynamic Kernel Module Support) package as well.
On Debian 11, this should not be necessary, because Wireguard is already natively in the 5.10
kernel (which is default for Debian 11). I have it a bit more complicated. I am in fact running Debian
11, but with the 5.4 kernel (backported from Debian 10), which also doesn't have Wireguard
natively, but that's just a side note. You can see the version status of the Wireguard package here:

|WG private key: gzf74894ger89a46sd14g84r8esg		|				|WG IP: 10.20.20.1/29						|
|													|				|WG public key: 6t57489hgnufjfiosdjjfp98h	|
|Windows Device------------------------------------->---WG tunnel--->WG private key: 4gfd89a7g1fd56g848g4fdg41fd|
[Interface]		
eth0: 192.168.20.56 (private IP from DHCP at home)		
WG IP: 10.20.20.3/29		
WG public key: fgd489fdsg84168e46g1514ge5g		
WG private key: iyut789tr496516sh416g4164h6h		
___		___

Note that since it's Debian, the packages are sometimes a bit outdated. At the time of
writing, the tools weren't available in the newest version – even in the unstable repo. The
default stable repo has even older packages.

$ sudo apt install wireguard

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/u23M6JFRnwIxeADS-image-1631729103900.png
https://en.wikipedia.org/wiki/Dynamic_Kernel_Module_Support

To find out how to add testing or unstable to Debian 11, check out my guide over here.

Configure Wireguard on the server
The main configuration folder is located in /etc/wireguard . This directory will contain both
configuration and private/public key, therefore it is only accessible with root by default. To get to
this directory, you need to elevate privileges.

Create configuration file for the Wireguard interface
Create a new file in /etc/wireguard . The name of the file will also be the name of the interface (like
eth0,lo,etc.) + .conf file extension. I like the default naming, so I will use name it wg0.conf . Before
creating the file, change umask to 077 , so that the file is readable only by root. Umask controlls
what permissions will newly created files and directories have. The default umask is 022 . When we
use the umask command with a different number, all new files and directories will be created
under permissions we have set. This modifies the default umask value only for the current sub-
shell. To go back to the default umask , just logout/login. You can also make the changes
permanent if you want. You can read more about umask here.

Prepare wg0.conf
Open wg0.conf with your favorite editor.

$ sudo su
(root)$ cd /etc/wireguard/

(root)$ umask 077

(root)/etc/wireguard$ touch wg0.conf

(root)$ vi /etc/wireguard/wg0.conf

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/FZ3xtEbVesxCcpPi-image-1631744762500.png
https://selfhostedfuture.xyz/books/debian/page/enable-testing-repo-on-stable-debian-11
https://web.archive.org/web/20210505043505/https://linuxzoo.net/page/sec_umask.html

We can slowly start preparing the config file, step by step. Right now, add the [Interface] block,
which will define properties of the server's Wireguard interface.

Address – The local IP of the server within the Wireguard tunnel and subnet mask in CIDR
notation. I know I will only have 3 clients, therefore I picked a small subnet /29 with only 6
usable hosts. (Basic subnetting knowledge is required).
ListenPort – The port on the server Wireguard will use to communicate with other peers.
After everything is set up, this will be the only port exposed to the open internet. If left
unspecified, default is 51820 .
PrivateKey – The private key of the server that will be generated in a moment. This key
should never be shared or leave the server. We will only send out the public key
(as the name suggests).

The wg0.conf file should look like this right now:

Generate server public/private keys
Wireguard is built around the public and private key pairs structure. There is technically no such a
thing as client or server in Wireguard, because everything is a peer. We use the client/server
terminology to help our mind imagine the setup better. Each peer will generate its own private and
public key. The private key will never leave the device where it originated from and should be
kept well secured. The public key will be copied over to the other peers. In my case, the VPS will
become a peer to both the Android and Windows device (clients). However, Android nor Windows
will even know about each other, they will only be aware of the VPS, which will be their only peer.
Reason for this is that they only need to talk to the VPS, not to each other.

Still as root, with umask set to 0077 (check by typing umask in the terminal) and in the
/etc/wireguard directory, create a new subdirectory for the public/private keys and preshared keys
(will explain in a second).

Navigate to the keys directory and generate the server key pair.

Always keep private keys on devices where they were created. They should never
be moved accross network or even accross devices.

[Interface]
Address = 10.20.20.1/29
ListenPort = 51895
PrivateKey =

(root)$ mkdir keys psk

https://web.archive.org/web/20210727233916/https://www.ionos.com/digitalguide/server/know-how/cidr-classless-inter-domain-routing/
https://web.archive.org/web/20210727233916/https://www.ionos.com/digitalguide/server/know-how/cidr-classless-inter-domain-routing/

The wg genkey command generates a random private key in base64 and prints it to standard
output (terminal). The output is instead redirected to tee , which both prints it to stdout (terminal),
but also saves it into a file wg0_private.key . The private key printed to stdout is then piped (|
symbol) to wg pubkey , which calculates the public key and prints it in base64 to stdout from a
corresponding private key (the one we redirected to it with the pipe), lastly redirect the public key
from stdout to a file wg0_public.key

Now we have two files in the keys directory:

Generate preshared keys

From the Wireguard whitepaper:

(root)$ cd keys
(root)$ wg genkey | tee wg0_private.key | wg pubkey > wg0_public.key

(root)$ ls

wg0_private.key wg0_public.key

This option adds an additional layer of symmetric-key cryptography to be mixed into the
already existing public-key cryptography, for post-quantum resistance (for paranoid people
like me).

In order to mitigate any future advances in quantum computing, WireGuard also
supports a mode in which any pair of peers might additionally pre-share a single
256-bit symmetric encryption key between themselves, in order to add an
additional layer of symmetric encryption. The attack model here is that
adversaries may be recording encrypted traffic on a long term basis, in hopes of
someday being able to break Curve25519 and decrypt past traffic. While pre-
sharing symmetric encryption keys is usually troublesome from a key
management perspective and might be more likely stolen, the idea is that by
the time quantum computing advances to break Curve25519, this pre-shared
symmetric key has been long forgotten. And, more importantly, in the shorter
term, if the pre-shared symmetric key is compromised, the Curve25519 keys still
provide more than sufficient protection. In lieu of using a completely post-
quantum crypto system, which as of writing are not practical for use here, this
optional hybrid approach of a pre-shared symmetric key to complement the
elliptic curve cryptography provides a sound and acceptable trade-off for the
extremely paranoid. Furthermore, it allows for building on top of WireGuard
sophisticated key-rotation schemes, in order to achieve varying types of post-

“

https://web.archive.org/web/20210818164108/https://www.wireguard.com/papers/wireguard.pdf

Move to the psk directory and generate preshared keys for each of the clients. The preshared key
will then be part of both the server and client configuration file.

Again, there should be 2 files in the directory, one for each client.

Edit wg0.conf
Open the config file again and fill in some of the remaining information:

AllowedIPs – IP address within the Wireguard tunnel for each peer in CIDR notation. Wireguard will
accept only packets coming from these specific IP ranges or from a single IP of the client when

compromise security.

(root)$ cd /etc/wireguard/psk
(root)$ wg genpsk > android_client.psk
(root)$ wg genpsk > windows10_client.psk

(root)$ ls

android_client.psk windows10_client.psk

[Interface]
Address = 10.20.20.1/29
ListenPort = 51895
PrivateKey = your_private_key

[Peer]
PublicKey =
PresharedKey = your_preshared_key_for_this_client
AllowedIPs = 10.20.20.2/32

[Peer]
PublicKey =
PresharedKey = your_preshared_key_for_this_client
AllowedIPs = 10.20.20.3/32

Open two terminals – one with wg0.conf in editor and the other in /etc/wireguard/ directory.
Now use cat to print contents of your newly generated key files to the terminal and simply
copy and paste them to the editor.

used with /32 .

This is it for now, we will come back to the config file in a moment.

Setting up the clients

1. Windows
Download and install Wireguard

Download the Windows Installer from the official Wireguard website.

Run the wireguard-installer.exe and after a few moments, this window should appear:

Remember which peer is which. The first one is for the Android device, while the second one
is for the Windows client.

https://www.wireguard.com/install/
https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/Pszc2Mx2k7dWqsts-image-1631824881800.png

Click the arrow next to Add Tunnel and select Add empty tunnel...

Wireguard will automatically generate a private and public key for this client.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/Nogy5sCsrv8mKWcK-image-1631826129100.png
https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/BUKXod7ybV7tb8j4-image-1631832115700.png

*note: all keys shown will be destroyed afterwards and are only used for demonstration purposes

Pick a name for the new tunnel, can be anything without spaces. Fill in the client config like I did:

PrivateKey – Private key of the client that it just generated
Address – Client's IP within the Wireguard tunnel
[Peer] – Configuration block with information about the VPS (the other end of the
Wireguard tunnel)
PublicKey – The public key of the server. Use cat to print the file
/etc/wireguard/keys/wg0_public.key to the terminal and copy & paste it here.
PresharedKey – Preshared key generated on the server to the psk directory, named
windows10_client.psk .
AllowedIPs – Only traffic destined for the 10.20.20.1/32 network will go through the
Wireguard tunnel (32 is only 1 host). To make all traffic go through the tunnel, put
0.0.0.0/0 to the same field.

[Interface]
PrivateKey = your_private_key
Address = 10.20.20.3/29

[Peer]
PublicKey = public_key_of_the_server
PresharedKey = preshared_key_from_server
AllowedIPs = 10.20.20.1/32
Endpoint = public_server_ip:51895

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/lIHWxQroeVjGOpaR-image-1631832294700.png

Endpoint – The public IP address and port on your Wireguard server. Run ip a on the
server to get it.

Add Windows client public key to the server config
Copy this public key and paste it into wg0.conf on the server to the PublicKey line in the
corresponding (second) [Peer] block.

Server /etc/wireguard/wg0.conf

On the Windows client:
Address in the [Interface] block is correct and same as AllowedIPs in [Peer] block on
the server (expect the number after /, that can be different)
PublicKey is filled with the key from /etc/wireguard/keys/wg0_public.key from the server.
PresharedKey is filled with the key from /etc/wireguard/psk/windows10_client.psk .
AllowedIPs is set to the Wireguard local IP of the server with /32 subnet mask.
Endpoint has the public IP of the server with the correct port.

On the server:
PublicKey in the [Peer] block is copied from the Windows client.
PresharedKey is the same as on the client.

[Interface]
Address = 10.20.20.1/29
ListenPort = 51895
PrivateKey = your_private_key

[Peer]
PublicKey =
PresharedKey = your_preshared_key_for_this_client
AllowedIPs = 10.20.20.2/32

[Peer]
PublicKey = public_key_from_the_windows_client
PresharedKey = your_preshared_key_for_this_client
AllowedIPs = 10.20.20.3/32

Windows client should now be set up, before testing, make sure you have completed the
following:

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/EHcv9iyNSrcOksHL-image-1631833030000.png

AllowedIPs corresponds to the Address field on the client (expect the number after /,
that can be different).

Test the Windows–Server connection
Make sure the firewall is set to allow communication on port 51895 on the server and comment out
the other peer in wg0.conf like this:

Start Wireguard interface on the server:

Start Wireguard tunnel on the Windows client by clicking Activate:

[Interface]
Address = 10.20.20.1/29
ListenPort = 51895
PrivateKey = your_private_key

[Peer]
PublicKey =
PresharedKey = your_preshared_key_for_this_client
AllowedIPs = 10.20.20.2/32

[Peer]
PublicKey = public_key_from_the_windows_client
PresharedKey = your_preshared_key_for_this_client
AllowedIPs = 10.20.20.3/32

$ wg-quick up wg0

[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.20.20.1/29 dev wg0
[#] ip link set mtu 8920 up dev wg0

2. Android
Leave the Windows client for a while, we will come back to it later to finish some things.

Install Wireguard for Android

Wireguard can be installed from Google Play Store or preferably from F-Droid. Use option which
suits you the best.

The tunnel is now established, use ping from both devices to test connectivity.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/IHsKGlPb1OcuZ9T6-image-1631835935700.png
https://play.google.com/store/apps/details?id=com.wireguard.android
https://f-droid.org/en/packages/com.wireguard.android/

Wireguard allows you to create tunnels in 3 ways – import from file, scan QR code or create from
scratch. The first two options are more convenient, however they require additional setup that we
will leave for another blog post. I will use the third option now.

Configure Wireguard tunnel

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/AdDRk0pzKB7zOqhl-image-1631873154000.png
https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/rKFtUyL19mV74ctV-image-1631873230100.png

Interface

Name – Name for the interface
Private key – Will be generated on the device and hidden by default, keep it secret
Public key – Derived from the Private key, will be shared with the server
Addresses – IP address of this device within the Wireguard tunnel in /29 subnet

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/JpjCAy6L0X6zAFFZ-image-1631873058900.png

Peer

Public key – Public key of the server (/etc/wireguard/keys/wg0_public.key)
Pre-shared key – Pre-shared key generated on the server (/etc/wireguard/psk/android_client.psk)
Endpoint – Public IP address of the server with appropriate port (look into
/etc/wireguard/wg0.conf , value of ListenPort)
Allowed IPs – Wireguard IP of the server in /32 subnet (only that IP), check Address field in
wg0.conf on the server. To route everything through the VPN, use 0.0.0.0/0

Additionally, if you want to restrict some apps from using the Wireguard interface, you can do so by
clicking All Applications and either excluding or including some apps. I will only be using my web
browser with the Wireguard tunnel to access my websites, therefore I include Bromite only (one of
the best Android web browsers).

Click the save icon in the top right corner and you should see the name of the interface in the main
menu. Toggle it on by clicking the button next to it or edit by clicking on the name.

Add Android client to the server config
The Android client should be fully set up for now. Go back to the server and fill appropriate part of
wg0.conf . Focus on the part we have commented out while testing the Windows client:

Remove the hashtags (#) and fill in PublicKey with the Android's Public key from here:

[Peer]
PublicKey =
PresharedKey = your_android_preshared_key
AllowedIPs = 10.20.20.2/32

Restart server interface
After editing the config, bring the Wireguard interface down and up again to reload the
configuration.

Test the Android–Server connection
Make sure the server Wireguard interface is up and click the button next to the name of the
Wireguard interface on Android. Android might ask you to confirm starting a VPN service and a
little key icon will appear in the notification bar.

Try accessing 10.20.20.1 in you Android browser or ping it with Termux or other application.

Android – restricting apps

Either come up with a way to copy the public key over to the server or just carefully type it
in manually.

$ sudo wg-quick down wg0
[#] ip link delete dev wg0

$ sudo wg-quick up wg0
[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.20.20.1/29 dev wg0
[#] ip link set mtu 8920 up dev wg0

If you've done everything correctly, you should be able to ping the server from your client.
For troubleshooting, try removing the pre-shared keys or check if you have copied all the
keys correctly or if the firewall is not preventing communication on the Wireguard port.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/T8eKBLzRK4CQ3tNr-image-1631881422700.png
https://termux.com/

When configuring the Android client, we have restricted all apps, except for our web browser, from
accessing the Wireguard tunnel. Therefore we aren't able to use ping in app like Termux to test
connecitivity to the server. You can temporarily include all apps and save the configuration or
navigate to 10.20.20.1 in the browser to perform a handshake with the server.

Wireguard and NAT
Wireguard is by design a very quiet protocol. If there's nothing to talk about then there's no data
going through the tunnel. Communication only takes place when peers have some data to send.
When there's no real data exchange happening, it seems like there is no tunnel at all. This works
perfectly fine in configurations where all peers are reachable through a public IP address, because
they can be reached at any moment by anyone. Peer 1 wants to talk to Peer 2? No problem. After 5
minutes, Peer 2 suddently wants to send something to Peer 1? Totally okay, they can all reach each
other.

But what if Peer 2 was instead hidden behind NAT? This is very common in consumer-grade
internet connections or in mobile networks. They don't have public IPv4 addresses, simply because
they don't need them. Now Peer 1 wants to talk to Peer 2, but how to get to it? There's no public
IPv4 address and the firewalls between Peer 1 and Peer 2 have already forgot any previously
established connections. You can test this yourself and see what happens. First of all, turn off all
tunnels and wait a few moments.

Pinging server and clients

Now bring both peers up again:

$ sudo wg-quick down wg0

[#] ip link delete dev wg0

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/nOpgCWSYzZKEaZ2K-image-1632052613500.png

Click Activate in Windows.

First of all, try pinging the client from the server. The server is 10.20.20.1 and client 10.20.20.3

Wait...why? Both clients are running and have the Wireguard interface active, right? Well, because
the client (10.20.20.3) is behind NAT and it hasn't contacted the server yet, the server doesn't know
where to send the data.

Now ping the server (10.20.20.1) from the client (10.20.20.3). This works because the server (
10.20.20.1) has a public IP and we can route the data to it this way.

$ sudo wg-quick up wg0

[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.20.20.1/29 dev wg0
[#] ip link set mtu 8920 up dev wg0

$ ping 10.20.20.3
PING 10.20.20.3 (10.20.20.3) 56(84) bytes of data.
From 10.20.20.3 icmp_seq=1 Destination Host Unreachable
ping: sendmsg: Destination address required
From 10.20.20.3 icmp_seq=2 Destination Host Unreachable
ping: sendmsg: Destination address required
From 10.20.20.3 icmp_seq=3 Destination Host Unreachable
ping: sendmsg: Destination address required
From 10.20.20.3 icmp_seq=4 Destination Host Unreachable
ping: sendmsg: Destination address required
From 10.20.20.3 icmp_seq=5 Destination Host Unreachable
ping: sendmsg: Destination address required

PS C:\Users\Marek> ping 10.20.20.1

Pinging 10.20.20.1 with 32 bytes of data:
Reply from 10.20.20.1: bytes=32 time=87ms TTL=64
Reply from 10.20.20.1: bytes=32 time=42ms TTL=64
Reply from 10.20.20.1: bytes=32 time=42ms TTL=64
Reply from 10.20.20.1: bytes=32 time=42ms TTL=64

Ping statistics for 10.20.20.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Quickly go back to the server and ping the client (10.20.20.3) again:

Why is it working now? It is because the client established the connection first and now for a while,
the server will be able to reach the client until this connection gets lost. There are two ways to
prevent this behavior (client having to send data first)

1. Setup Persistent keepalive to keep the connection alive behind NAT or stateful firewalls,
disabled by default.

2. Always initiate connection from the client first.

In our case (connecting to a web server to access a service), the server doesn't need to
communicate with us unless we want it to. When accessing a website on the server, we know that
we (the client) will always initiate the connection first. However, if it causes issues within your
setup, configure Persistent keepalive.

Moving network services to the WG interface
In order to move our network services to another interface, we first need to find out what exactly is
running on the server. We are interested in services and their listening ports. There are a few
commands to achieve this, e.g netstat , lsof , ss and nmap . Pick the one that works on your server,
so you don't have to install anything additional just for one command.

I will run netstat with a couple of flags grouped together, definitely easier than writing netstat -t -u -l
-p -n

-t lists TCP
-u lists UDP
-l shows only listening ports (omitted by default)
-p shows what program/service is running on each port
-n doesn't resolve IPs and hosts

Approximate round trip times in milli-seconds:
 Minimum = 42ms, Maximum = 87ms, Average = 53ms

$ ping 10.20.20.3
PING 10.20.20.3 (10.20.20.3) 56(84) bytes of data.
64 bytes from 10.20.20.3: icmp_seq=1 ttl=128 time=42.7 ms
64 bytes from 10.20.20.3: icmp_seq=2 ttl=128 time=42.8 ms
64 bytes from 10.20.20.3: icmp_seq=3 ttl=128 time=42.5 ms

$ netstat -tulpn

$ sudo netstat -tulpn

https://www.wireguard.com/quickstart/#nat-and-firewall-traversal-persistence

We can see a few services running on localhost (127.0.0.1), systemd-resolve localhost address (
127.0.0.53), example public IP (78.97.52.14) or on all interfaces (0.0.0.0). The only one that we will
care about now are 0.0.0.0 and 78.97.52.14 . From now on, everything will be very setup specific, so
I might even change the way I write, from we to me.

Binding Nginx to wg0 interface
The main service I want to move is Nginx. It runs all my websites on this server, so it would make
sense to migrate it first. Right now, it binds itself to all interfaces (0.0.0.0), so the websites should
technically be already accessible on the Wireguard IP of the server (10.20.20.1), but I want them to
be ONLY accessible on that interface.

Edit /etc/nginx/conf.d/name_of_config.conf and add the Wireguard IP address in front of ports in server
config block on the listen line, like this:

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 72/systemd-resolved
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 205/uwsgi
tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 98/nginx: master pr
tcp 0 0 127.0.0.1:4004 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:4005 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:5000 0.0.0.0:* LISTEN 77/python3
tcp 0 0 78.97.52.14:7985 0.0.0.0:* LISTEN 107/sshd: /usr/sbin
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 98/nginx: master pr
udp 0 0 127.0.0.53:53 0.0.0.0:* 72/systemd-resolved
udp 0 0 0.0.0.0:51895 0.0.0.0:* -
udp6 0 0 :::51895 :::* -

server {
	listen 443 ssl http2;
 server_name youwebsite.com
 ...
 ...

to

server {
	listen 10.20.20.1:443 ssl http2;
 server_name youwebsite.com
 ...
 ...

Before reloading or restarting Nginx, make sure Wireguard is running and the interface is up,
otherwise you will run into errors.

Reload Nginx to cause least interruption to the service.

Run netstat again to check if Nginx rebinded like I wanted:

When I try to access my websites now, it....doesn't work. But at least I perfectly know why and how
to fix it. Before, when I wanted to access mysite.com , I typed in mysite.com into the browser address
bar and my device requested a DNS record for mysite.com , which turned out to be a public IP
address of my server, or something else (depending on what I had set on my domain's registrar
website.) The DNS records still points to the public IP of my server, but Nginx isn't serving the
websites on that public IP anymore, but on the Wireguard one. How do I fix this?

Remove old DNS records
First of all, I will remove the old DNS A records with my registrar so that I don't forget. This varies
vastly from registrar to registrar, so you will have to figure it our on your own.

Point new DNS records to Wireguard

$ sudo wg-quick up wg0

$ sudo systemctl reload nginx

$ sudo netstat -tulpn

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 72/systemd-resolved
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 205/uwsgi
tcp 0 0 10.20.20.1:443 0.0.0.0:* LISTEN 23281/nginx: master
tcp 0 0 127.0.0.1:4004 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:4005 0.0.0.0:* LISTEN 82/filtron
tcp 0 0 127.0.0.1:5000 0.0.0.0:* LISTEN 77/python3
tcp 0 0 78.97.52.14:7985 0.0.0.0:* LISTEN 107/sshd: /usr/sbin
tcp 0 0 10.20.20.1:80 0.0.0.0:* LISTEN 23281/nginx: master
udp 0 0 127.0.0.53:53 0.0.0.0:* 72/systemd-resolved
udp 0 0 0.0.0.0:51895 0.0.0.0:* -
udp6 0 0 :::51895 :::* -

The problem is that I cannot just create new A records with the Wireguard IP (10.20.20.1), because
that's a reserved private IP, it wouldn't route anywhere. There are couple of ways to solve this:

1. Fill in the DNS Server field on both clients with a DNS server that will be able to provide
resolution for the private IP 10.20.20.1 . It could even be the 10.20.20.1 server itself, but
that means I would have to setup a DNS service on the server

2. Point clients (using the DNS Server field) to your local DNS server on your home network
and create the A records there. This method, however, will not work for roaming clients if
they connect to a different network (like mobile data).

3. Since it's just one server with two websites and two clients (this method wouldn't make
sense in larger deployments), I could just edit local DNS entries (hosts file) to avoid having
to configure a whole new DNS server, just for this single purpose.

I might look into a more sophisticated solution for DNS with split tunnel VPN later on, but for now I
will use the third method.

Editing hosts file on Windows
Navigate to C:\Windows\System32\drivers\etc in the Windows Explorer and open the file named hosts
in Notepad and add the following lines into the file:

You might need to flush your DNS cache, but after saving the file, those two sites should now
resolve correctly, because Windows checks the local hosts file first by default.

Editing hosts file on Android
With Android, it's a little more complicated. Since its a mobile operating system designed to keep
the user away from all advanced configuration (but still better than iPhone in this regard), we
cannot simply open the hosts file and edit it. On a rooted phone you can, but on a regular one you
can't. We have basically two options

1. Use a pseudo-VPN app to re-route all traffic locally through a filter that allows you to add
custom DNS entries (I think Blokada can do that, apart from other things), except we
can't, because There can be only one VPN connection running at the same time. The existing interface

is deactivated when a new one is created. – developer.android.com Judging by one comment on
Reddit "I'm not entirely sure if this is how it works but using wireguard on a rooted phone
and a compatible kernel let's wireguard interact directly through the kernel. It doesn't
show up as an active VPN through android. So it may be possible to use that and a
conventional VPN approach to have two at once?" If this actually works, it should
theoretically be possible, but you need a rooted phone and it's probably in early stages.

2. Use the VPN server as a DNS server, since it's a roaming device anyway.

10.20.20.1		mysite.com
10.20.20.1		mysite2.com

https://developer.android.com/reference/android/net/VpnService.html

3. Use adb to pull the hosts file to PC, edit it and push it back to your Android device. That's
what I'll do.

How to get abd up and running is outside of this guide, there might be a guide for that on this site
at some point, but until then, refer to the internet.

Enable USB debugging in Android settings and connect it using a cable to you PC. Allow USB
debugging for this specific device and check that it's recongnized.

Transfer the hosts file from Android to your device:

Open it with Notepad and add new lines containing IP and hostname in this format:

Setup basic DNS server on Linux
So I will eventually have to setup a DNS server on the Wireguard server, but just a simple one. No
need to use bind , but simply DNSmasq .

Install DNSmasq

$.\adb.exe devices
List of devices attached
215e29da device

.\adb.exe pull /system/etc/hosts C:\Users\Marek\Desktop

10.20.20.1		mysite.com
10.20.20.1		mysite2.com

Nope, this didn't work because pushing the file to a read-only file system doesn't work.
Christ, I have to root my phone as soon as I can...

$ sudo apt install dnsmasq

Unpacking dnsmasq-base (2.85-1) ...
Selecting previously unselected package dnsmasq.
Preparing to unpack .../dnsmasq_2.85-1_all.deb ...
Unpacking dnsmasq (2.85-1) ...
Setting up dnsmasq-base (2.85-1) ...
Setting up dns-root-data (2021011101) ...
Setting up dnsmasq (2.85-1) ...
Created symlink /etc/systemd/system/multi-user.target.wants/dnsmasq.service →

Run DNSmasq at startup:

The problem is that DNSmasq tries to bind to port 53 , which on my system is already occupied by
systemd-resolved . I need to figure out how to make these two work together or disable systemd-
resolved.

Edit /etc/systemd/resolved.conf
DNS configuration is usually managed by /etc/resolv.conf file, however, if you open the file, it states
the following – # This file is managed by man:systemd-resolved(8). Do not edit.

Therefore use /etc/systemd/resolved.conf to perform any configuration regarding DNS. We are
interested mainly in the DNSStubListener line, which we have to uncomment and set to no . That
disables systemd-resolved from binding to 127.0.0.53:53 . I would also advise to disable LLMNR and

/lib/systemd/system/dnsmasq.service.
Job for dnsmasq.service failed because the control process exited with error code.
See "systemctl status dnsmasq.service" and "journalctl -xe" for details.
invoke-rc.d: initscript dnsmasq, action "start" failed.
● dnsmasq.service - dnsmasq - A lightweight DHCP and caching DNS server
 Loaded: loaded (/lib/systemd/system/dnsmasq.service; enabled; vendor preset: enabled)
 Active: failed (Result: exit-code) since Mon 2021-09-20 00:43:35 CEST; 18ms ago
 Process: 23908 ExecStartPre=/etc/init.d/dnsmasq checkconfig (code=exited, status=0/SUCCESS)
 Process: 23915 ExecStart=/etc/init.d/dnsmasq systemd-exec (code=exited, status=2)
 CPU: 55ms

Sep 20 00:43:35 hostname systemd[1]: Starting dnsmasq - A lightweight DHCP and caching DNS server...
Sep 20 00:43:35 hostname dnsmasq[23915]: dnsmasq: failed to create listening socket for port 53: Address
already in use
Sep 20 00:43:35 hostname dnsmasq[23915]: failed to create listening socket for port 53: Address already in use
Sep 20 00:43:35 hostname systemd[1]: dnsmasq.service: Control process exited, code=exited,
status=2/INVALIDARGUMENT
Sep 20 00:43:35 hostname dnsmasq[23915]: FAILED to start up
Sep 20 00:43:35 hostname systemd[1]: dnsmasq.service: Failed with result 'exit-code'.
Sep 20 00:43:35 hostname systemd[1]: Failed to start dnsmasq - A lightweight DHCP and caching DNS server.
Processing triggers for dbus (1.12.20-2) ...

$ sudo systemctl enable dnsmasq

Heads up – Skip to Final configuration for server to see the final configuration files. The
following is mostly me trying to figure out how to do this properly. If you enjoy reading about
others suffering, go ahead.

MulticastDNS , do some research about these two yourself to figure if you need them. The file should
now look like this:

Restart systemd-resolved. Be aware that you might lose DNS connectivity until you start DNSmasq.
I won't do that right now, because I still need to change a few things:

Running systemd-resolve to check it's status reveals that some settings aren't still how I wanted. I
have managed to change the Global configuration, but not settings for individual interfaces.

I haven't find another config file to add these values into, so just change them using the systemd-
resolve command.

[Resolve]
DNS=your_DNS_server
#FallbackDNS=
#Domains=
LLMNR=no
MulticastDNS=no
#DNSSEC=allow-downgrade
#DNSOverTLS=no
#Cache=yes
DNSStubListener=no
#ReadEtcHosts=yes

$ sudo systemctl restart systemd-resolved

$ sudo systemd-resolve --status

Global
 Protocols: -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
resolv.conf mode: uplink
 DNS Servers: my_prefered_DNS_server

Link 15 (wg0)
Current Scopes: none
 Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported

Link 19 (eth0)
Current Scopes: DNS
 Protocols: +DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
 DNS Servers: DNS_server_i_dont_like

Again, confirm that everything is set to your liking with systemd-resolve --status

Edit /etc/dnsmasq.d
By default, the file is full of commented out lines with all kinds of configuration settings. In fact, it's
so long that it's better to back it up and write just the options you want into an empty one.

Delete everything in /etc/dnsmasq.conf with vi and 1000dd .

Add the following lines to the config:

Restart DNSmasq and check if it binded to the right interfaces (localhost and Wireguard)

$ sudo systemd-resolve --interface eth0 --set-dns my_prefered_DNS_server
$ sudo systemd-resolve --interface eth0 --set-llmnr no
$ sudo systemd-resolve --interface wg0 --set-llmnr no

$ systemd-resolve --status
Global
 Protocols: -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
 resolv.conf mode: uplink
Current DNS Server: my_prefered_DNS_server
 DNS Servers: my_prefered_DNS_server

Link 15 (wg0)
Current Scopes: none
 Protocols: -DefaultRoute -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported

Link 19 (eth0)
 Current Scopes: DNS
 Protocols: +DefaultRoute -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Current DNS Server: my_prefered_DNS_server
 DNS Servers: my_prefered_DNS_server

$ sudo cp /etc/dnsmasq.conf /etc/dnsmasq.conf.default

$ sudo vi /etc/dnsmasq.conf

interface=lo,wg0
bind-interfaces

All looks great, however, trying multiple pings to common websites reveal random DNS issues:

Previous plan
I'm currently trying to figure out how to get DNS resolution working on the server itself (so that the
server can resolve names with DNSmasq and systemd-resolved combined). My previous plan was:

Disable systemd-resolved binding to 127.0.0.53 with DNSStubListener=no in
/etc/systemd/resolved.conf
Set DNS on all interfaces with systemd-resolved to 127.0.0.1 (this also changes
nameserver in /etc/resolv.conf to 127.0.0.1)
Run DNSmasq on 127.0.0.1 (for the server itelf) and on 10.20.20.1 (for the Android
Wireguard client).
Set DNS server in DNSmasq (/etc/dnsmasq.conf) to a public DNS of choice for regular name
resolution.

Thanks to this, when the server wants to perform a DNS query, this happens (as far as I
understand, don't @ me and kindly let me know if I'm wrong):

1. It first looks into /etc/nsswitch.conf and looks onto the hosts line, which says files dns .
2. Because of files , it looks into /etc/hosts first, to see if the address isn't hard-coded this

way.
3. Then because of dns , it looks into /etc/resolv.conf , which is managed by systemd-resolved.

This file will only contain 127.0.0.1 , which points to DNSmasq running on that interface on
port 53 . The reason why it points to 127.0.0.1 is because we have set DNS to 127.0.0.1
globally in /etc/systemd/resolved.conf .

$ sudo systemctl restart dnsmasq

$ sudo netstat -tulpn | grep 53
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN 25764/dnsmasq
tcp 0 0 10.20.20.1:53 0.0.0.0:* LISTEN 25764/dnsmasq
udp 0 0 127.0.0.1:53 0.0.0.0:* 25764/dnsmasq
udp 0 0 10.20.20.1:53 0.0.0.0:* 25764/dnsmasq

$ ping google.com
ping: google.com: Temporary failure in name resolution

At this point, I have spent a few hours researching how name resolution works on Linux
machines. It got a little more complicated with systemd-resolved. I won't explain the whole
proccess or what I did, just show you the final configuration files and try to explain how the
name resolution works as of now.

4. DNSmasq will take that query and forward it to our prefered public DNS server configured
in /etc/dnsmasq.conf with the server line.

Unfortunately, this does not work, or at least I was unable to make it work this way. The outcome
of this is a broken name resolution that sometimes works and sometimes doesn't.

Current plan
To fix my server's DNS resolution, I came up with a reversed setup plan. Instead of everything
pointing to DNSmasq for name resolution, I will point DNSmasq to the other side, which is systemd-
resolved – this turned out to produce the same behavior.

After thorough examination, I decided to completely throw systemd-resolved out the window by
stopping the service and disabling it.

Try the good old way of editing /etc/resolv.conf and add your DNS server. After adding different
upstream DNS servers, I'm slowly starting to realize that the entire issue might have been actually
caused by the upstream server and not my local configuration. The DNS I used before is extremely
fast (+-2 ms response times), but sometimes just stops responding completely. It might have
something to do with reverse lookup and I might somehow fix it later, but for now, I have decided
to opt for the slower, but more reliable upstream DNS server.

Final configuration for server
There might actually be a way to do it! Go back to my reversed setup plan, because this time
it works.

Enable and start systemd-resolved again:

Look into /etc/resolv.conf . Because we have started systemd-resolved, it had already probably
overwrote /etc/resolv.conf with the following, which is alright:

Open /etc/systemd/resolve.conf and make it look like this:

$ sudo systemctl stop systemd-resolved
$ sudo systemctl disable systemd-resolved

$ sudo systemctl enable systemd-resolved
$ sudo sytemctl start systemd-resolved

nameserver 127.0.0.53
options edns0 trust-ad
search .

Check status of systemd-resolve and edit DNS server for eth0 if it still has a wrong value

Your /etc/dnsmasq.conf should look like this. We want to run DNSmasq only on the Wireguard
interface, but interface also automatically adds loopback to the list. Use except-interface to disable
binding to localhost.

[Resolve]
DNS=my_prefered_DNS_server
FallbackDNS=secondary_DNS_server
#Domains=
LLMNR=no
MulticastDNS=no
#DNSSEC=allow-downgrade
#DNSOverTLS=no
#Cache=yes
DNSStubListener=yes
#ReadEtcHosts=yes

$ systemd-resolve --status

Global
 Protocols: -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
 resolv.conf mode: stub
 Current DNS Server: my_prefered_DNS_server
 DNS Servers: my_prefered_DNS_server
Fallback DNS Servers: secondary_DNS_server

Link 15 (wg0)
Current Scopes: none
 Protocols: -DefaultRoute -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported

Link 19 (eth0)
 Current Scopes: DNS
 Protocols: +DefaultRoute -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Current DNS Server: my_prefered_DNS_server
 DNS Servers: my_prefered_DNS_server

interface=wg0
except-interface=lo
bind-interfaces

Start DNSmasq

You can tell by the output of systemctl status dnsmasq , that it's using 127.0.0.53 as it's DNS server.

Recap what we know about name resolution on the server now. When the server makes a DNS
query, this happens (probably):

Debian consults /etc/nsswitch.conf , reads /etc/hosts due to files option specified at the
hosts: line, then goes for the DNS server.
DNS server in /etc/resolv.conf points to 127.0.0.53 , which is systemd-resolv DNSStubListener .
systemd-resolved is set up to use a prefered public DNS server.

Now onto the main reason why I did this whole thing. Provide a simple DNS server for my Android
client.

Setup DNS for client name resolution

Edit /etc/hosts
Add the websites you want to resolve to /etc/hosts . That way, when clients queries DNSmasq
listening on 10.20.20.1 , it forwards the query to 127.0.0.53 , which also reads /etc/hosts , resolving
the IP correctly.

Add DNS to Android config
Edit the config by adding 10.20.20.1 to DNS servers .

Adjust Firewall for testing
In order for the Android device to be able to use the DNS server on 10.20.20.1 , I need to adjust
iptables to allow traffic on port 53 on the Wireguard interface. Add this to your iptables
configuration file and apply with iptables-restore .

server=127.0.0.53

sudo systemctl start dnsmasq

...
using nameserver 127.0.0.53#53
reading /etc/resolv.conf
...

10.20.20.1 mysite.com
10.20.20.1 mysite2.com

The only "problem" right now is that the Android client will most likely use the Wireguard server IP
10.20.20.1 for all name resolution while it's connected to the VPN. This is not a huge deal since the
queries are pretty fast, but might be a deal breaker for some.

Adjusting Firewall rules
Everything regarding the Wireguard VPN should be configured:

Wireguard tunnel between a server and 2 peers (clients)
Services running on the Wireguard interface only (Nginx)
Correct DNS resolving for both the server and Android client

Now it's time to fix the Firewall, so what are our goals here?

DROP everything except:
HTTP/S and DNS on Wireguard interface
Ping on all interfaces
SSH on Wireguard interface only (later, since SSH is our only access to the VPS and
breaking it would cause immense headache)

I am using very powerful iptables with iptables-restore utility to write my rules to a config file instead
to the command line. The config file is located in /etc/iptables/rules.v4 (may be different in your
case).

Open the file and edit it. Everything will be explained in the following code block behind #. For
easier reading, I have divided it into parts:

Setup the 3 main chains – INPUT , OUTPUT and FORWARD . It is recommended to always set INPUT
as implicit DENY and only whitelist approved services and ports.

Allow DNS queries on the Wireguard interface
-A INPUT -p udp -m udp --dport 53 -i wg0 -j ACCEPT

$ sudo iptables-restore /etc/iptables/rules.v4

Now access your websites from the Android client and it should resolve correctly to the
server's Wireguard IP.

*filter
CONFIGURE INPUT, OUTPUT AND FORWARD CHAINS
Drop forwarded traffic, we don't need that since we are not acting as a router
:FORWARD DROP [0:0]

When everything is blocked by default, these rules have to exist to allow communication on
localhost and any established connections (when you initiace connection from the server)

Rules to allow devices within the Wireguard tunnel to access web services (ports 80 and 443) +
53 for DNS.

Rules for the public IP of the server. The only thing that needs to be open is the Wireguard port.
You can also configure the server to accept ICMP ping requests for easier troubleshooting. Without
this rule, the server won't be "pingable" even if it's up.

SSH is the most critical service and therefore will still be available on all interface and I will move it
to the Wireguard interface after testing.

Accept all outgoing connections
:OUTPUT ACCEPT [0:0]

Block all incoming traffic (default DENY)
:INPUT DROP [0:0]

BASIC RULES FOR THINGS TO WORK WITH DEFAULT DENY ON INPUT CHAIN
Do not block localhost traffic to itself
-A INPUT -i lo -j ACCEPT

Allow established and related incoming connections
-A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

WIREGUARD INTERFACE CONFIG
Allow web traffic for my search engine (only on the Wireguard interface)
-A INPUT -p tcp -m tcp --dport 80 -i wg0 -j ACCEPT
-A INPUT -p tcp -m tcp --dport 443 -i wg0 -j ACCEPT

Allow DNS queries on the Wireguard interface
-A INPUT -p udp -m udp --dport 53 -i wg0 -j ACCEPT

PUBLIC IP RULES
Allow ICMP pings on all interfaces (for easier troubleshooting)
-A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Allow Wireguard on the public IP
-A INPUT -p udp -m udp --dport 51895 -i eth0 -j ACCEPT

The entire config looks like this:

SSH
Allow SSH on the port that it's running on
-A INPUT -p tcp -m tcp --dport 7985 -j ACCEPT

Commit rules
COMMIT

*filter
CONFIGURE INPUT, OUTPUT AND FORWARD CHAINS
Drop forwarded traffic, we don't need that since we are not acting as a router
:FORWARD DROP [0:0]

Accept all outgoing connections
:OUTPUT ACCEPT [0:0]

Block all incoming traffic (default DENY)
:INPUT DROP [0:0]

BASIC RULES FOR THINGS TO WORK WITH DEFAULT DENY ON INPUT CHAIN
Do not block localhost traffic to itself
-A INPUT -i lo -j ACCEPT

Allow established and related incoming connections
-A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

WIREGUARD INTERFACE CONFIG
Allow web traffic for my websites (only on the Wireguard interface)
-A INPUT -p tcp -m tcp --dport 80 -i wg0 -j ACCEPT
-A INPUT -p tcp -m tcp --dport 443 -i wg0 -j ACCEPT

Allow DNS queries on the Wireguard interface
-A INPUT -p udp -m udp --dport 53 -i wg0 -j ACCEPT

PUBLIC IP RULES
Allow ICMP pings on all interfaces (for easier troubleshooting)
-A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Allow Wireguard on the public IP

Apply the configuration with iptables-restore . First make sure all rules make sense to you.

List and check the rules (-n to not resolve DNS and -v for verbose output)

Enable Wireguard on startup
If we are going to move SSH into the Wireguard tunnel only, we need to make sure that the
interface is active even (or especially) after the server restarts. For that, we need to enable
Wireguard with systemd (or other init service). Fortunately it's pretty easy.

-A INPUT -p udp -m udp --dport 51895 -j ACCEPT

SSH
Allow SSH on the port that it's running on
-A INPUT -p tcp -m tcp --dport 7985 -j ACCEPT

Commit rules
COMMIT

$ sudo iptables-restore /etc/iptables/rules.v4

$ sudo iptables -L -nv

Chain INPUT (policy DROP 32 packets, 1941 bytes)
 pkts bytes target prot opt in out source destination
 0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
 47 2876 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 ctstate RELATED,ESTABLISHED
 0 0 ACCEPT tcp -- wg0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80
 0 0 ACCEPT tcp -- wg0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443
 0 0 ACCEPT udp -- wg0 * 0.0.0.0/0 0.0.0.0/0 udp dpt:53
 2 168 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8
 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:51895
 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:7985

Chain FORWARD (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 34 packets, 5056 bytes)
 pkts bytes target prot opt in out source destination

It's time to test all of our efforts – reboot the server and hope all configuration stays correct
afterwards. I like to do this, even though it's not neccessary, to save myself from unnecessary
headaches when the server unexpectedly restarts and it turns out that the configuration wouldn't
survive a schedules restart anyway.

Troubleshooting post-reboot
First thing I noticed is that Nginx was unable to start. Wireguard interface started up fine, but the
webserver didn't, even after manual service restart. Turns out Apache2 was starting as a service
and occupying port 80. I am too scared to completely purge Apache2 from the system, so I will just
stop and disable the service.

Time for another reboot. This time, Nginx failed to start again, but manual restart of the serviced
fixed it. This leads me to the idea, that Nginx is trying to start sooner than Wireguard and is unable
to bind to the Wireguard interface, because it does not exist yet.

Edit the nginx.service systemd file to make sure it starts after Wireguard had already brought up the
interface. You can either directly edit /lib/systemd/system/nginx.service file, but that is a bad practice,
because the file is usually overwritten with updates. The correct way to do this should be use sudo
systemctl edit --full nginx.service . Add wg-quick@wg0.service to the line end of the line with After= and
add a new line Requires=wg-quick@wg0.service before the previous one.

After another reboot, Nginx started on its own successfully. List systemd services to check if there
are any other issues.

$ sudo systemctl enable wg-quick@wg0.service
$ sudo systemctl daemon-reload
$ sudo wg-quick down wg0
$ sudo systemctl start wg-quick@wg0

$ sudo systemctl stop apache2
$ sudo systemctl disable apache2

$ systemctl list-units --type=service

 UNIT LOAD ACTIVE SUB DESCRIPTION
 console-getty.service loaded active running Console Getty
 dbus.service loaded active running D-Bus System Message Bus
● dnsmasq.service loaded failed failed dnsmasq - A lightweight DHCP and caching DNS server
 filtron.service loaded active running filtron
 ifupdown-pre.service loaded active exited Helper to synchronize boot up for ifupdown
 networking.service loaded active exited Raise network interfaces
 nginx.service loaded active running nginx - high performance web server

mailto:wg-quick@wg0

It seems that dnsmasq also failed to start and I assume it was due to the same issue. Edit dnsmasq
with systemd again:

Both lines Requires and After already exist, so just add wg-quick@wg0.service on each of these
line:

 ssh.service loaded active running OpenBSD Secure Shell server
 systemd-journal-flush.service loaded active exited Flush Journal to Persistent Storage
 systemd-journald.service loaded active running Journal Service
 systemd-logind.service loaded active running User Login Management
 systemd-modules-load.service loaded active exited Load Kernel Modules
 systemd-networkd.service loaded active running Network Service
 systemd-remount-fs.service loaded active exited Remount Root and Kernel File Systems
 systemd-resolved.service loaded active running Network Name Resolution
 systemd-sysctl.service loaded active exited Apply Kernel Variables
 systemd-sysusers.service loaded active exited Create System Users
 systemd-tmpfiles-setup-dev.service loaded active exited Create Static Device Nodes in /dev
 systemd-tmpfiles-setup.service loaded active exited Create Volatile Files and Directories
● systemd-udev-trigger.service loaded failed failed Coldplug All udev Devices
 systemd-udevd.service loaded active running Rule-based Manager for Device Events and Files
 systemd-update-utmp.service loaded active exited Update UTMP about System Boot/Shutdown
 systemd-user-sessions.service loaded active exited Permit User Sessions
 user-runtime-dir@1000.service loaded active exited User Runtime Directory /run/user/1000
 user@1000.service loaded active running User Manager for UID 1000
 uwsgi.service loaded active running LSB: Start/stop uWSGI server instance(s)
 wg-quick@wg0.service loaded active exited WireGuard via wg-quick(8) for wg0
 whoogle.service loaded active running Whoogle

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
28 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

$ sudo systemctl edit --full dnsmasq.service

[Unit]
Description=dnsmasq - A lightweight DHCP and caching DNS server
Requires=network.target wg-quick@wg0.service
Wants=nss-lookup.target

mailto:wg-quick@wg0.service

This howerver, creates a paradox. DNSmasq requires wg-quick and starts after wg-quick , but
also before nss-lookup.target

Now examine wg-quick (systemctl cat wg-quick@wg0)

According to this configuraion – wg-quick starts after nss-lookup.target when DNSmasq has to start
before nss-lookup.target , while also starting after wg-quick , which has to start after nss-
lookup.targetand we got a loop. My solution to this is to simply comment out the DNSmasq
dependency of starting before nss-lookup.target .

This shouldn't break anything. Here's a sidenote about what nss-lookup.target even is:

A target that should be used as synchronization point for all host/network name service lookups.
Note that this is independent of UNIX user/group name lookups for which nss-user-lookup.target
should be used. All services for which the availability of full host/network name resolution is
essential should be ordered after this target, but not pull it in. systemd automatically adds
dependencies of type After= for this target unit to all SysV init script service units with an LSB
header referring to the "$named" facility.

The only thing that's left is to restore iptables at boot according to the config.

Setup iptables-persistent
There are multiple ways to make iptables rules persist accross reboots, but this seems to be the
prefered way.

Before=nss-lookup.target
After=network.target wg-quick@wg0.service

...
After=network-online.target nss-lookup.target
Wants=network-online.target nss-lookup.target
...

$ sudo systemctl edit --full dnsmasq.service

[Unit]
Description=dnsmasq - A lightweight DHCP and caching DNS server
Requires=network.target wg-quick@wg0.service
Wants=nss-lookup.target
Before=nss-lookup.target
After=network.target wg-quick@wg0.service

mailto:wg-quick@wg0

Install iptables-persistent . It will ask you to save the current configuration to a file. We already have a
config file present and this would only overwrite our file, so say no.

Try rebooting and checking with sudo iptables -L -nv if the rules have been applied.

Migrate SSH to Wireguard interface

Configure SSH on all interfaces
Currently my iptables firewall accepts SSH traffic on all interfaces on the correct port. SSH server
configuration resides in /etc/ssh/ssdh_config . In this file ListenAddress is currently pointed to the public
IP only. To bind both the public and Wireguard IP, replace the old value of ListenAddress with 0.0.0.0
and restart the service (your SSH connection won't be droped)

$ sudo apt install iptables-persistent
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
 netfilter-persistent
The following NEW packages will be installed:
 iptables-persistent netfilter-persistent
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Need to get 23.4 kB of archives.
After this operation, 91.1 kB of additional disk space will be used.
Do you want to continue? [Y/n] y

Notice that I am running SSH on a non-standard port. The default is 22 and is often changed
to reduce the number of bots spamming it on public servers. When running over VPN, it is
safe to return back to the default 22 for simpler configuration.

....
Port 7985
#AddressFamily any,inet
ListenAddress 0.0.0.0
#ListenAddress ::
....

$ sudo systemctl restart sshd

Connect SSH using the Wireguard server IP
Open another terminal windows on the machine that you use to connect to the server (Windows
clients in my case):

It will give you the classic warning about unknown ECDSA fingerprint, type yes to procceed.

Voila...you should be in. Before binding SSH to the Wireguard interface only, edit SSHd service to
start after wg-quick. Currently, SSHd doesn't care if wg-quick already started or not and might
try to bind to an interface that doesn't exist yet. See the config now:

$ systemctl status sshd

sudo systemctl status sshd
● ssh.service - OpenBSD Secure Shell server
 Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled)
 Active: active (running) since Tue 2021-09-21 20:02:01 CEST; 4s ago
 Docs: man:sshd(8)
 man:sshd_config(5)
 Process: 3503 ExecStartPre=/usr/sbin/sshd -t (code=exited, status=0/SUCCESS)
 Main PID: 3504 (sshd)
 CPU: 55ms
 CGroup: /system.slice/ssh.service
 └─3504 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups

Sep 21 20:02:00 hostname systemd[1]: ssh.service: Succeeded.
Sep 21 20:02:00 hostname systemd[1]: Stopped OpenBSD Secure Shell server.
Sep 21 20:02:00 hostname systemd[1]: Starting OpenBSD Secure Shell server...
Sep 21 20:02:01 hostname sshd[3504]: Server listening on 0.0.0.0 port 7985.
Sep 21 20:02:01 hostname systemd[1]: Started OpenBSD Secure Shell server.

> ssh username@10.20.20.1 -p 7985

The authenticity of host '[10.20.20.1]:7985 ([10.20.20.1]:7985)' can't be established.
ECDSA key fingerprint is SHA256:&UIhigdanUYdfs/wF56atgafd851jL4w9uT564sg6133.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[10.20.20.1]:7985' (ECDSA) to the list of known hosts.

$ sudo systemctl cat sshd

[Unit]

Edit the config like this: (changes on the Requires and After line)

Description=OpenBSD Secure Shell server
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target auditd.service
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

[Service]
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartPreventExitStatus=255
Type=notify
RuntimeDirectory=sshd
RuntimeDirectoryMode=0755

[Install]
WantedBy=multi-user.target
Alias=sshd.service

$ sudo systemctl edit --full sshd

[Unit]
Description=OpenBSD Secure Shell server
Documentation=man:sshd(8) man:sshd_config(5)
Requires=wg-quick@wg0.service
After=network.target auditd.service wg-quick@wg0.service
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

[Service]
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process

Reload systemctl daemon to make the new configuration active:

I am now going to reboot the server for the last time I hope to see whether all services started up
in a correct order and everything works. Surprise, surprise – it does.

Limit SSH to the Wireguard interface only
Go back to the sshd config file in /etc/ssh/sshd_config and set the ListenAddress field to 10.20.20.1 .
Restart sshd to apply.

Notice sshd binding to the Wireguard interface.

Check netstat to confirm that everything is running on the Wireguard interface:

Restart=on-failure
RestartPreventExitStatus=255
Type=notify
RuntimeDirectory=sshd
RuntimeDirectoryMode=0755

[Install]
WantedBy=multi-user.target
Alias=sshd.service

$ sudo systemctl daemon-reload

$ sudo systemctl restart sshd

$ systemctl status sshd
...
Sep 21 22:53:20 hostname sshd[301]: Server listening on 10.20.20.1 port 7985.
...

$sudo netstat -tulpn

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:5000 0.0.0.0:* LISTEN 76/python3
tcp 0 0 10.20.20.1:7985 0.0.0.0:* LISTEN 301/sshd: /usr/sbin
tcp 0 0 10.20.20.1:80 0.0.0.0:* LISTEN 149/nginx: master p
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 71/systemd-resolved
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 230/uwsgi

Adjust iptables
Make a last slight change to the iptables configuration in /etc/iptables/rules.v4 by restricting SSH to
the wg0 interface

Replace the line

with

Apply iptables using iptables-restore

Recap what we have managed to do today:

Setup Wireguard with 3 peers (Linux server, Windows and Android client)
Setup web services and SSH on correct interfaces
Setup a DNS server for our clients
Adjust network firewall and make it persistent

Doesn't seems like a lot, though when you look through this entire article, it's clear that it took
some serious research and troubleshooting (just like any other IT thing, right?).

tcp 0 0 10.20.20.1:443 0.0.0.0:* LISTEN 149/nginx: master p
tcp 0 0 127.0.0.1:4004 0.0.0.0:* LISTEN 80/filtron
tcp 0 0 127.0.0.1:4005 0.0.0.0:* LISTEN 80/filtron
udp 0 0 127.0.0.53:53 0.0.0.0:* 71/systemd-resolved
udp 0 0 0.0.0.0:51895 0.0.0.0:* -
udp6 0 0 :::51895 :::* -

-A INPUT -p tcp -m tcp --dport 7985 -j ACCEPT

-A INPUT -i wg0 -p tcp -m tcp --dport 7985 -j ACCEPT

$ sudo iptables-restore /etc/iptables/rules.v4

This should be it. Turned out to be way more complicated than expected, but that's exactly
how it usually works, but unexpected things occur :)

Revision #39
Created 15 September 2021 18:49:32 by Marek
Updated 22 September 2021 01:55:13 by Marek

