
Paperless-ngx
Paperless-ngx is a community-supported open-source document management system that
transforms your physical documents into a searchable online archive so you can keep, well, less
paper.

Install Paperless-ngx on Debian 12 (bare-metal)
Paperless-ngx on Android (FOSS)

Install Paperless-ngx on
Debian 12 (bare-metal)
Paperless is a cool selfhosted application that allows you to manage your paper documents in a
digital form. It provides OCR capabilities with automatic language detection (more on that later)
and a bunch of other nice features. This guide walks you through the process on installing
Paperless-ngx on a Debian 12 system. Before continuing, please note the following:

Paperless-ngx has a Docker image avaiable for you to download. If you want to go the
hassle-free way, choose this option
The official documentation for bare-metal installation was written at the time when Buster
was the latest release of Debian. Since that's not really up to date anymore, I decided to
go through this process on Debian 12 to see if it still works or what changes are necessary
to make it possible.

System preparation
This guide assumes that you have already installed a Debian 12 system on bare-metal or as a VM,
so we won't go through the process here. You can checkout any article online as it's a fairly simple
process.

Installation
Dependencies
First of all, we need to install a bunch of packages as dependencies for the Paperless-ngx
application. Go for a cup of coffee while you run this, it's gonna take a few minutes.

Install the following packages

Then get a few more for OCR

sudo apt install python3 python3-pip python3-dev imagemagick fonts-liberation gnupg libpq-dev default-
libmysqlclient-dev pkg-config libmagic-dev mime-support libzbar0 poppler-utils

https://docs.paperless-ngx.com/setup/#bare_metal

If you are on Raspberry Pi, you are going to need libatlas-base-dev and libxslt1-dev as well.

Redis
You can install Redis from the official Debian repository, which will get you the version 7.0.
Papereless requires anything newer than 6.0, so it's fine, howerver you can install a more recent
7.2 version through Redis repositories as per their official documentation. I decided to follow the
Redis docs, so I'm going to be adding a new repo.

First of all, install some basic prerequisites, which may already be on your system

Add repository to apt using the following commands

Then you just update your repos and install the latest stable redis

Configure Redis for systemd
For some reason, Redis doesn't automatically create a systemd service + there's a configuration
option we need to change for it to work properly.

Firstly, create a new file called redis.service in /etc/systemd/system folder using your favorite
editor and paste the following contents into it:

sudo apt install unpaper ghostscript icc-profiles-free qpdf liblept5 libxml2 pngquant zlib1g tesseract-ocr

sudo apt install lsb-release curl gpg

curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release
-cs) main" | sudo tee /etc/apt/sources.list.d/redis.list

sudo apt update
sudo apt install redis

[Unit]
Description=Redis
After=syslog.target

[Service]
ExecStart=/usr/bin/redis-server /etc/redis/redis.conf
RestartSec=5s
Restart=on-success

https://redis.io/docs/getting-started/installation/install-redis-on-linux/

Reload systemd daemons configuration

Before starting the service, you need to also edit the Redis configuration file, otherwise it
will get stuck in a loop (which happened in my case)
Open the /etc/redis/redis.conf file and change the following options to look like this

deamonize no
supervised systemd

[Install]
WantedBy=multi-user.target

Make sure the binary /usr/bin/redis-server and config /etc/redis/redis.conf file for Redis exist on
your system. Change them in the systemd unit file if necessary.

sudo systemctl daemon-reload

################################# GENERAL
#####################################

By default Redis does not run as a daemon. Use 'yes' if you need it.
Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
When Redis is supervised by upstart or systemd, this parameter has no impact.
daemonize no

If you run Redis from upstart or systemd, Redis can interact with your
supervision tree. Options:
supervised no - no supervision interaction
supervised upstart - signal upstart by putting Redis into SIGSTOP mode
requires "expect stop" in your upstart job config
supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
on startup, and updating Redis status on a regular
basis.
supervised auto - detect upstart or systemd method based on
UPSTART_JOB or NOTIFY_SOCKET environment variables
Note: these supervision methods only signal "process is ready."
They do not enable continuous pings back to your supervisor.
#
The default is "no". To run under upstart/systemd, you can simply uncomment
the line below:

After that, you can enable and start the service

or

Please check if the service started properly and resolve any issues based on the output of
the following command

PostgreSQL database
Since Redis isn't an actual persistent database, we need something to store our data. By default,
we can use the included SQLite database. For a more robust setup, it is advised to go for either
PostgreSQL or MariaDB. We will go for PostgreSQL, since it's the preffered option.

Install PostgreSQL from the official repo

Paperless doesn't setup the database automatically in any way, so we need to prepare it ourselves.
We are gonna create a database and user + password.

Firstly, login to PostgreSQL - switch to postgres user and then run psql

When you are in, create a new database

#
supervised systemd

sudo systemctl enable /etc/systemd/system/redis.service
sudo systemctl start /etc/systemd/system/redis.service

sudo systemctl enable /etc/systemd/system/redis.service --now

sudo systemctl status /etc/systemd/system/redis.service

sudo apt install postgresql

sudo su postgres
postgres$ psql
psql (15.3 (Debian 15.3-0+deb12u1))
Type "help" for help.

postgres=# create database paperless;
CREATE DATABASE

Next up is the user, which paperless is going to use to connect to the database, replace
REDACTED with a secure password.

Lastly, grant all privileges to the Paperless user on the Paperless database

Normally, this should be enough for everything to work properly, but for some reason, during the
later steps, the application failed due to some error with the database, so I had to give the
Paperless user a superuser permission on the database. This is something I would advise strongly
against, however in this case, it's a standalone instance used only by Paperless, which can manage
all data there anyway.

Similar issue has been mentioned on their Github here and resolved by temporarily assigning
superuser permission to the Paperless user.

List the current roles

Add paperless to Superuser role

Check if the user is actually there

postgres=# create user paperless with encrypted password 'REDACTED';
CREATE ROLE

postgres=# grant all privileges on database paperless to paperless;
GRANT

Save the username and password somewhere safe, we will use it later.

postgres=# \du
 List of roles
 Role name | Attributes | Member of
-----------+--+-----------
 paperless | | {}
 postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}

postgres=# alter user paperless with superuser;
ALTER ROLE

postgres=# \du
 List of roles
 Role name | Attributes | Member of

https://github.com/paperless-ngx/paperless-ngx/issues/2051

Folders and user
Directories
Paperless will need a directory for files served by a web server + a place to save uploaded
documents. I've chosen the following directories and disks. It is recommended to place the data
directories to a drive that you can later expand.

Web server directory - /var/www/paperless/paperless-ngx/
Media dir - /data/paperless/media
Data dir - /data/paperless/data
Consume dir - /data/paperless/consume

If you want more convenience, you can setup a Samba share on the Consume directory, which is a
place that Paperless watches for new documents to be "consumed" = added to Paperless. We
won't go through the process here, since you can also upload trough web GUI, but there's a few
guides online.

User
Paperless should run under a separate system user to increase security. You don't want to run
these things as root, never.

The following command will create the paperless user and set it's home directory to the
web server root

You can set the owner of the web server root directory like this

Paperless binary
Grab the latest release in .tar.xz format from the Releases page on Github and save it to
your home directory using curl

-----------+--+-----------
 paperless | Superuser | {}
 postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}

adduser paperless --system --home /var/www/paperless --group

Make sure that all the directories above are readable and writable by the paperless user!
/var/www/paperless should belong to the user as well.

sudo chown -R paperless:paperless /var/www/paperless/

https://github.com/paperless-ngx/paperless-ngx/releases

Extract the contents of the archive

Copy the extracted folder to you web server root directory

By doing this, you end up with /var/www/paperless as the home directory of the paperless user and
/var/www/paperless/paperless-ngx as the actual web server root dir. You can play around with this
yourself and choose your own folder structure.

Configure Paperless-ngx
There's a couple of configuration option we should check before continuing with the installation.
The config file is named paperless.conf and is stored in /var/www/paperless/paperless-ngx .

By default, all configuration options are commented out and we have tu uncomment the ones we
would like to edit. Pay special attention to the following options.

Required services
You have to specify these, otherwise it won't work

PAPERLESS_REDIS - Set this to the location where Redis is listening. Since we have Redis
installed on the local system with the default port, you can use redis://localhost:6379
PAPERLESS_DBHOST - Since we have PostgreSQL installed on the local system, use localhost
as the value.
PAPERLESS_DBPORT - We are running the default port 5432 . You can check this using tools
like netstat .
PAPERLESS_DBNAME - Name of the database we created in PostgreSQL - paperless .
PAPERLESS_DBUSER - Username of the user with rights to DB, in our case paperless .
PAPERLESS_DBPASS - Password for the paperless DB user we have created earlier.
PAPERLESS_DBSSLMODE - We haven't setup SSL/TLS so we can leave it at prefer

Paths and folders
You can point these at the folder we have setup earilier on a separate drive.

PAPERLESS_CONSUMPTION_DIR - This where your documents should go to be consumed -
/data/paperless/consume
PAPERLESS_DATA_DIR - This is where Paperless stores all its data - /data/paperless/data

curl -O -L https://github.com/paperless-ngx/paperless-ngx/releases/download/v1.17.1/paperless-ngx-
v1.17.1.tar.xz

tar -xvf paperless-ngx-v1.17.1.tar.xz

sudo cp -r paperless-ngx /var/www/paperless/

redis://localhost:6379

PAPERLESS_MEDIA_ROOT - Place where documents and thumbnails are stored -
/data/paperless/media

Security and hosting
PAPERLESS_SECRET_KEY - This should be a very long random key made out of letters,
numbers and other characters as it's used for authentication. The default key is well
known so CHANGE THIS.
PAPERLESS_URL - This should point to your domain that you will use to access Paperless-
ngx, e.g. https://paperless-ngx.mydomain.com

OCR settings
This is where you set you OCR languages. Paperless-ngx supports multiple languages at once, but
sadly doesn't allow you to pick which to use in the web GUI, but so far the automatic detection
worked pretty fine for me, even for documents with mixed languages.

PAPERLESS_OCR_LANGUAGES - You language/laguages as 3-letter codes from here separated
by + - That would be ces+eng in my case.
PAPERLESS_OCR_LANGUAGE - The same as above for some reason.

Software tweaks
PAPERLESS_TIME_ZONE - Set this to your timezone, otherwise you will get improper
timestamps in the Paperless GUI. You can figure out the name of you timezone by running
timedatectl on the system

There's a lot more configuration options which we haven't talked about here. You can explore those
in the official documentation.

Python packages

Please note that you have to install the corresponding tesseract-ocr packages selected here,
e.g. apt-get install tesseract-ocr-ces

user@server:/home/user# timedatectl
 Local time: Wed 2023-08-23 14:17:59 CEST
 Universal time: Wed 2023-08-23 12:17:59 UTC
 RTC time: Wed 2023-08-23 12:18:01
 Time zone: Europe/Prague (CEST, +0200)
System clock synchronized: no
 NTP service: n/a
 RTC in local TZ: no

https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://docs.paperless-ngx.com/configuration/

Paperless requires a lot of Python dependencies. This took me a while to troubleshoot since I was
running into the following error:

This was resolved by utilizing another python package that we have to install, which is python3-venv
. It will allow us to create a virtual environment for pip to install python packages in. This is to avoid
confict between python packages installed by apt and pip - something you don't want to run into.

Setup Python virtual environment (venv)
For this task, please switch to the paperless user. Since the user doesn't have a shell
asigned, we have to specify -s /bin/bash when running sudo.

Go to the Paperless web server directory and run the following. This will setup the virtual
environment user .venv file in /var/www/paperless/paperless-ngx

sudo -Hu paperless pip3 install -r requirements.txt

error: externally-managed-environment

× This environment is externally managed
╰─> To install Python packages system-wide, try apt install
 python3-xyz, where xyz is the package you are trying to
 install.

 If you wish to install a non-Debian-packaged Python package,
 create a virtual environment using python3 -m venv path/to/venv.
 Then use path/to/venv/bin/python and path/to/venv/bin/pip. Make
 sure you have python3-full installed.

 If you wish to install a non-Debian packaged Python application,
 it may be easiest to use pipx install xyz, which will manage a
 virtual environment for you. Make sure you have pipx installed.

 See /usr/share/doc/python3.11/README.venv for more information.

note: If you believe this is a mistake, please contact your Python installation or OS distribution provider. You can
override this, at the risk of breaking your Python installation or OS, by passing --break-system-packages.
hint: See PEP 668 for the detailed specification.

sudo apt install python3-venv

sudo su paperless -s /bin/bash

Still in the same directory, activate the venv

Install Python packages
This is the part where you would normally run python3 -m pip install -r requirements.txt still in the .venv
under paperless user, which will install all the Python packages specified in the requirements.txt file
using pip. Unfortunately for us, the list of packages includes their versions, which are different in
Python 3.11 (default on Debian 12). It's because Paperless clearly states Python 3.8 or 3.9 as a
requirement in the docs.

What now? You can perhaps install the older version of Python from the repositories, but don't do
that, just don't.

Thank fully, someone over at Github already complaned about this and someone else came up with
a solution. This is an edited version of the requirements.txt file with updated versions of packages
for Python 3.11.

python3 -m venv .venv

source .venv/bin/activate

-i https://pypi.python.org/simple
--extra-index-url https://www.piwheels.org/simple
amqp==5.1.1 ; python_version >= '3.6'
anyio==3.7.0 ; python_version >= '3.7'
asgiref==3.7.2 ; python_version >= '3.7'
async-timeout==4.0.2 ; python_full_version <= '4'
backports.zoneinfo==0.2.1 ; python_version < '3.9'
billiard==4.1.0 ; python_version >= '3.7'
bleach==6.0.0
brotli==1.0.9
celery[redis]==5.3.0
certifi==2023.5.7 ; python_version >= '3.6'
cffi==1.15.1
channels==4.0.0
channels-redis==4.1.0
charset-normalizer==3.1.0 ; python_full_version >= '3.7.0'
click==8.1.3 ; python_version >= '3.7'
click-didyoumean==0.3.0 ; python_full_version >= '3.6.2' and python_full_version < '4.0.0'
click-plugins==1.1.1
click-repl==0.2.0

https://docs.paperless-ngx.com/setup/?query=consume#bare_metal
https://github.com/paperless-ngx/paperless-ngx/discussions/3648
https://github.com/engels0n

coloredlogs==15.0.1 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
concurrent-log-handler==0.9.24
cryptography==40.0.1
dateparser==1.1.8
deprecation==2.1.0
django==4.1.9
django-celery-results==2.5.1
django-compression-middleware==0.5.0
django-cors-headers==4.0.0
django-extensions==3.2.3
django-filter==22.1
django-guardian==2.4.0
djangorestframework==3.14.0
djangorestframework-guardian==0.3.0
exceptiongroup==1.1.1 ; python_version < '4'
filelock==3.12.2
flower==1.2.0
gunicorn==20.1.0
h11==0.14.0 ; python_version >= '3.7'
hiredis==2.2.3
httpcore==0.17.2 ; python_version >= '3.7'
httptools==0.5.0
httpx==0.24.1
humanfriendly==10.0 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
humanize==4.6.0 ; python_version >= '3.7'
idna==3.4 ; python_version >= '3.5'
imap-tools==1.0.0
img2pdf==0.4.4
importlib-resources==5.12.0 ; python_version < '4'
inotify-simple==1.3.5 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
inotifyrecursive==0.3.5
joblib==1.2.0 ; python_version >= '3.7'
kombu==5.3.0 ; python_version >= '3.8'
langdetect==1.0.9
lxml==4.9.2 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
msgpack==1.0.5
mysqlclient==2.1.1
nltk==3.8.1
numpy==1.24.3 ; python_version >= '3.8'
ocrmypdf==14.2.1

packaging==23.1 ; python_version >= '3.7'
pathvalidate==3.0.0
pdf2image==1.16.3
pdfminer.six==20221105 ; python_version >= '3.6'
pikepdf==7.2.0
pillow==9.5.0
pluggy==1.0.0 ; python_version >= '3.6'
portalocker==2.7.0 ; python_version >= '3.5'
prometheus-client==0.17.0 ; python_version >= '3.6'
prompt-toolkit==3.0.38 ; python_full_version >= '3.7.0'
psycopg2==2.9.6
pycparser==2.21
python-dateutil==2.8.2
python-dotenv==1.0.0
python-gnupg==0.5.0
python-ipware==0.9.0
python-magic==0.4.27
pytz==2023.3
pyyaml==6.0
pyzbar==0.1.9
rapidfuzz==3.1.1
redis[hiredis]==4.5.5
regex==2023.6.3 ; python_version >= '3.6'
reportlab==3.6.12
scikit-learn==1.2.2
scipy==1.10.1
setproctitle==1.3.2
setuptools==67.8.0 ; python_version >= '3.7'
six==1.16.0 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
sniffio==1.3.0 ; python_version >= '3.7'
sqlparse==0.4.4 ; python_version >= '3.5'
threadpoolctl==3.1.0 ; python_version >= '3.6'
tika-client==0.2.0
tornado==6.3.2 ; python_version >= '3.8'
tqdm==4.65.0
typing-extensions==4.6.3 ; python_version < '4'
tzdata==2023.3 ; python_version >= '2'
tzlocal==5.0.1 ; python_version >= '3.7'
uvicorn[standard]==0.22.0
uvloop==0.17.0

To proceed, replace the contents of the requirements.txt file in /var/www/paperless/paperless-
ngx with the list above.
Afterwards, return to the .venv as the paperless user and run this in the proper directory.

Finish Paperless-ngx installation
Still logged in as the paperless user in .venv go to folder /var/www/paperless/paperless-ngx/src
and run the following command:

This should look something like this:

vine==5.0.0 ; python_version >= '3.6'
watchdog==2.3.1
watchfiles==0.19.0
wcwidth==0.2.6
webencodings==0.5.1
websockets==11.0.3
whitenoise==6.4.0
whoosh==2.7.4
zipp==3.15.0 ; python_version < '4'
zstandard==0.21.0 ; python_version >= '3.7'
zxing-cpp==2.0.0 ; platform_machine == 'x86_64'

pip install -r requirements.txt

You can return to venv anytime by running source .venv/bin/activate as the Paperless user in
the /var/www/paperless/paperless-ngx directory

python3 manage.py migrate

Operations to perform:
 Apply all migrations: admin, auth, authtoken, contenttypes, django_celery_results, documents, guardian,
paperless_mail, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying admin.0003_logentry_add_action_flag_choices... OK
 Applying contenttypes.0002_remove_content_type_name... OK
.....

After everything finishes with OK, create the first superuser which we will use to log in

Systemd services setup
Now that we have basically finished the installation, we still have nothing running. This is where the
official documentation gets kinda rough and falls into "you can compile this random program to get
his feature etc.". Fortunately, the basic systemd unit files are included in the scripts folder. Below
are the same unit files, just edited to work with our current setup (different paths, .venv...)

paperless-consumer.service

paperless-scheduler.service

(.venv) paperless@server:~/paperless-ngx/src$ python3 manage.py createsuperuser
Username (leave blank to use 'paperless'): my-admin
Email address: my-admin@mydomain.com
Password:
Password (again):
Superuser created successfully.

[Unit]
Description=Paperless consumer
Requires=redis.service

[Service]
User=paperless
Group=paperless
WorkingDirectory=/var/www/paperless/paperless-ngx/src
ExecStart=/var/www/paperless/paperless-ngx/.venv/bin/python3 manage.py document_consumer

[Install]
WantedBy=multi-user.target

[Unit]
Description=Paperless Celery Beat
Requires=redis.service

[Service]
User=paperless
Group=paperless
WorkingDirectory=/var/www/paperless/paperless-ngx/src

paperless-task-queue.service

paperless-webserver.service

paperless-webserver.socket

ExecStart=/var/www/paperless/paperless-ngx/.venv/bin/celery --app paperless beat --loglevel INFO

[Install]
WantedBy=multi-user.target

[Unit]
Description=Paperless Celery Workers
Requires=redis.service

[Service]
User=paperless
Group=paperless
WorkingDirectory=/var/www/paperless/paperless-ngx/src
ExecStart=/var/www/paperless/paperless-ngx/.venv/bin/celery --app paperless worker --loglevel INFO

[Install]
WantedBy=multi-user.target

[Unit]
Description=Paperless webserver
After=network.target
Wants=network.target
Requires=redis.service
#Requires=paperless-webserver.socket

[Service]
User=paperless
Group=paperless
WorkingDirectory=/var/www/paperless/paperless-ngx/src
ExecStart=/var/www/paperless/paperless-ngx/.venv/bin/gunicorn -c /var/www/paperless/paperless-
ngx/gunicorn.conf.py paperless.asgi:application

[Install]
WantedBy=multi-user.target

Firstly, place these service files into the /etc/systemd/system directory, e.g.

After you do this for each service above, run daemon reload

Start and enable each service by running

Check status of each service and resolve any failed services (usually due to wrong paths
and things like that, but these should work

Nginx configuration
If you've done everything correctly so far, you should be able to reach the web GUI of Paperless on
port 8000 in your web browser. You can also login using the superuser you create earlier.

[Unit]
Description=Paperless Webserver Socket

[Socket]
ListenStream=80
NoDelay=true

[Install]
WantedBy=sockets.target

sudo vim /etc/systemd/system/paperless-webserver.service

sudo systemctl daemon-reload

sudo systemctl enable nameoftheservice --now

sudo systemctl status nameoftheservice

The problem is that you are accessing a non-production gunicorn web server that should never be
used standalone without a reverse proxy like nginx in front of it. We also need to enable TLS for
secure communication which gunicorn allows, but advises against.

Install nginx

Remove default websites and html

Generate and sign a TLS certificate (you can use Let's Encrypt, selfsigned or anything
else) and place the cert and key into correct directories on the sytem

Certificate - /etc/ssl/certs/yourcert.crt
Key - /etc/ssl/private/yourkey.key

Make sure the key is not readable by anyone other than root

sudo apt install nginx

rm -rvf /var/www/html/
removed '/var/www/html/index.nginx-debian.html'
removed directory '/var/www/html/'

rm -rvf /etc/nginx/sites-enabled/*
removed '/etc/nginx/sites-enabled/default'

rm -rvf /etc/nginx/sites-available/*
removed '/etc/nginx/sites-available/default'

sudo chmod 600 /etc/ssl/private/yourkey.key

https://selfhostedfuture.xyz/uploads/images/gallery/2023-08/rcXQwYyaCB1Td9rs-image.png

Create a new nginx config file and paste in the following text

vim /etc/nginx/conf.d/paperless.conf

server {
 listen 80 default_server;

 location / {
 return 301 https://$host$request_uri;
 }
}

server {
 listen 443 ssl http2;
 server_name paperless.mydomain.com;

 location / {

 # Adjust host and port as required.
 proxy_pass http://localhost:8000/;

 # These configuration options are required for WebSockets to work.
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";

 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 add_header Referrer-Policy "strict-origin-when-cross-origin";
 }

 ssl_certificate /etc/ssl/certs/yourcert.crt;
 ssl_certificate_key /etc/ssl/private/yourkey.key;
 ssl_session_timeout 1d;
 ssl_session_cache shared:MozSSL:10m; # about 40000 sessions
 ssl_session_tickets off;

The configuration file above was generated using Mozzila's SSL Configuration Generator and
merged with the official Paperless docs.

To explain it more precisely, here's the same configuration with comments

 # modern configuration
 ssl_protocols TLSv1.3;
 ssl_prefer_server_ciphers off;

 # HSTS (ngx_http_headers_module is required) (63072000 seconds)
 add_header Strict-Transport-Security "max-age=63072000" always;

 client_max_body_size 100M;
}

This block redirects all traffic from port 80 to sercure port 443
server {
 listen 80 default_server;

 location / {
 return 301 https://$host$request_uri;
 }
}

server {
 listen 443 ssl http2;
 server_name paperless.mydomain.com; # Here's where you define your domain

 location / {

 # Adjust host and port as required.
 proxy_pass http://localhost:8000/; # This part passes all requests from Nginx to gunicorn running on the
same system on port
 # 8000. This way, no user goes to gunicorn directly, but is secured by nginx in the
front

 # These configuration options are required for WebSockets to work.
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";

https://ssl-config.mozilla.org/#server=nginx&version=1.17.7&config=modern&openssl=1.1.1k&ocsp=false&guideline=5.7
https://github.com/paperless-ngx/paperless-ngx/wiki/Using-a-Reverse-Proxy-with-Paperless-ngx#nginx

Now just check the configuration and reload nginx configuration

Bind gunicorn to localhost
There's just one more little thing missing. If you try to access port 8000, you will still get directly to
gunicorn skipping nginx. You want to avoid exposing this service since you have already setup

 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 add_header Referrer-Policy "strict-origin-when-cross-origin";
 }

 ssl_certificate /etc/ssl/certs/yourcert.crt; # Path to your TLS certificate
 ssl_certificate_key /etc/ssl/private/yourkey.key; # Path to your TLS certificate key
 ssl_session_timeout 1d;
 ssl_session_cache shared:MozSSL:10m; # about 40000 sessions
 ssl_session_tickets off;

 # modern configuration
 ssl_protocols TLSv1.3;
 ssl_prefer_server_ciphers off;

 # HSTS (ngx_http_headers_module is required) (63072000 seconds)
 add_header Strict-Transport-Security "max-age=63072000" always;

 client_max_body_size 100M; # This allows you to upload documents up to 100MB in size. You can adjust this
option to your liking
}

nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

systemctl reload nginx

You should be able to access Paperless using your domain name on standard HTTP/S ports.

nginx. To do this you can block port 8000 on your local firewall.

Proper way to do this, however, would be to change binding of gunicorn from the default 0.0.0.0 to
127.0.0.1.

0.0.0.0 means that it bind to all interfaces, but we only need it to bind to localhost (127.0.0.1) since
all requests will be passed through nginx on the same machine.

Edit the file /var/www/paperless/paperless-ngx/gunicorn.conf.py and replace [::] in
PAPERLESS_BIND_ADDR with 127.0.0.1
Before

After

Restart the webserver service

You should be able to see gunicorn listening at 127.0.0.1 only

import os

See https://docs.gunicorn.org/en/stable/settings.html for
explanations of settings

bind = f'{os.getenv("PAPERLESS_BIND_ADDR", "[::]")}:{os.getenv("PAPERLESS_PORT", 8000)}'

workers = int(os.getenv("PAPERLESS_WEBSERVER_WORKERS", 1))
worker_class = "paperless.workers.ConfigurableWorker"
timeout = 120

import os

See https://docs.gunicorn.org/en/stable/settings.html for
explanations of settings

bind = f'{os.getenv("PAPERLESS_BIND_ADDR", "[127.0.0.1]")}:{os.getenv("PAPERLESS_PORT", 8000)}'

workers = int(os.getenv("PAPERLESS_WEBSERVER_WORKERS", 1))
worker_class = "paperless.workers.ConfigurableWorker"
timeout = 120

systemctl restart paperless-webserver.service

We can also check by running netstat

Enjoy!

root@server:# systemctl status paperless-webserver.service
● paperless-webserver.service - Paperless webserver
 Loaded: loaded (/etc/systemd/system/paperless-webserver.service; disabled; preset: enabled)
 Active: active (running) since Sun 2023-08-20 02:44:10 CEST; 2s ago
 Main PID: 1948 (gunicorn: maste)
 Tasks: 13 (limit: 4641)
 Memory: 84.7M
 CPU: 1.140s
 CGroup: /system.slice/paperless-webserver.service
 ├─1948 "gunicorn: master [paperless.asgi:application]"
 └─1965 "gunicorn: worker [paperless.asgi:application]"

Aug 20 02:44:10 server systemd[1]: Started paperless-webserver.service - Paperless webserver.
Aug 20 02:44:11 server gunicorn[1948]: [2023-08-20 02:44:11 +0200] [1948] [INFO] Starting gunicorn 20.1.0
Aug 20 02:44:11 server gunicorn[1948]: [2023-08-20 02:44:11 +0200] [1948] [INFO] Listening at:
http://127.0.0.1:8000 (1948)
Aug 20 02:44:11 server gunicorn[1948]: [2023-08-20 02:44:11 +0200] [1948] [INFO] Using worker:
paperless.workers.ConfigurableWorker
Aug 20 02:44:11 server1 gunicorn[1948]: [2023-08-20 02:44:11 +0200] [1948] [INFO] Server is ready. Spawning
workers

root@server:# netstat -tulpn
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:8000 0.0.0.0:* LISTEN 457/gunicorn: maste

Paperless-ngx on Android
(FOSS)
Paperless-ngx has a couple of community Android client applications for accessing your selfhosted
Paperless-ngx instance. We will take a look at Paperless Mobile which is available on the
IzzyOnDroid F-Droid Repository.

Installation
As mentioned above, you can install the application from F-Droid after adding the IzzyOnDroid
repository. If you are using Neo Store, the repository should be available by default.

https://github.com/astubenbord/paperless-mobile
https://apt.izzysoft.de/fdroid/index/apk/de.astubenbord.paperless_mobile
https://github.com/NeoApplications/Neo-Store

Preparation in Paperless-ngx
Decide which user you would like to use in the mobile app - most likely your main account where
you store your documents.

It's necessary to check permissions of said user to make sure it will work with Paperless Mobile.
There's specifically 2 permissions you have to grant to the user.

Login to your Paperless-ngx instance as an administrator through web interface and go to Settings
.

https://selfhostedfuture.xyz/uploads/images/gallery/2023-10/vn3bUNxGOBuCXsH3-img-20231010-235046.jpg

Click on Users & Groups and select Edit on the user you will be using.

Make sure that the user has the following permissions. If not, grant them:

UISettings: View
User: View

https://selfhostedfuture.xyz/uploads/images/gallery/2023-10/jqIV3DmaRVJbpwa3-image.png
https://selfhostedfuture.xyz/uploads/images/gallery/2023-10/jD3HirtTEesGwrXw-image.png

Click Save to apply the changes.

Setup in App
First of all, specify the address of your server. Depending on your setup, it could be an IP adress
with a port, a domain name or any other HTTP or HTTPS endpoint. Even if you have a self-signed
HTTPS certificate, it should not complain about it. You can also configure mTLS in case you want.

Don't be confused by the fact that the Sign In button is still grey even after you put in the server
address - just press Enter on your Android keyboard and the app will try to connect to the server.

https://selfhostedfuture.xyz/uploads/images/gallery/2023-10/1PByXxBvJvgARW9M-image.png

If you see a green text saying Connection successfully established. you are good to go. In case
you get a timeout or other error, make sure you are connected to a network that can access your
Paperless-ngx instance on the specified port (usually 80 or 443 or custom).

https://selfhostedfuture.xyz/uploads/images/gallery/2023-10/YGCy8pjEoyPZC8yK-img-20231011-001038.jpg

Now fill in the user credential and click Sign In.

If you have everything setup correctly, you will see your documents.

