
Installation
Installing OpenBSD 6.9 on a laptop with encryption

Installing OpenBSD 6.9 on a
laptop with encryption
Lately, I've been looking into some old laptops which I could spend my upcoming college years
with. I wanted something cheap, but also good enough that I could use it for basic university
related work. Of couse I could just buy a new low-end Windows laptop and be happy, but that
would be a waste of money. Instead, I searched through used market for an old ThinkPad, T500 in
particular. If you are a bit confused or haven't heard of Lenovo's ThinkPads and why they have a
special place among many, I recommend you check out this guide. There are many newer models
than the 2009's T500, however T500 seems to be the last "Librebootable" 15" ThinkPad. Flashing
Libreboot is something I would love to do as well, but currently don't have the right tools to
complete the process documented on the Libreboot wiki here. After T500 there are still a couple of
pretty decent ThinkPad models, altough it is not possible to install completely Libre firmware on
them.

Downloading OpenBSD
Downloading OpenBSD is pretty straightforward, just prepare two USB drives – one which we will
boot the installer from and the other for our encryption key.

Head over to the download page and click on minirootXX.img

If you have a 64-bit machine, which the T500 is, select amd64. This will be a minimal intallation
and we will only download file sets that we want during the install. If you do not care about this,
you can pick one with the file sets already included.

For those unfortunate people who still use Windows on their main machine like me, you may use
utility like Rufus to burn the image to a USB. Just pick the file and drive, make sure to choose the
right one, this will overwrite all data on the USB drive.

https://web.archive.org/web/20210228073512/https://www.bobble.tech/free-stuff/used-thinkpad-buyers-guide
https://web.archive.org/web/20210821235930/https://libreboot.org/docs/install/t500_external.html
https://www.openbsd.org/faq/faq4.html#Download
https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/WxIAQY7lqa12dtpE-image-1630068858200.png

Once we have the USB ready, we can plug it into the T500, press F12 and choose to boot from it.
We will be greeted by this screen:

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/sjtjYX8MX5PzcI0S-image-1630068789500.png

Installing OpenBSD
Full disk encryption with key (FDE)
I'm using a laptop, so it would be advisable to implement some sort of encryption in case it gets
lost or someone steals it. We will follow the official guide here (with a little modification) and setup
FDE with a USB drive for convenience, so that we don't have to type the encryption password every
time and instead rely on the possesion of the USB drive.

Jump out of the installer into the shell by typing S

Begin the proces by creating a device node. You may be familiar with the naming convetion from
Linux. sd is essentially SCSI disk driver. Here's a little comparasion of naming drives Linux vs
OpenBSD:

 Linux OpenBSD

First hard drive /dev/sda /dev/sd0

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/vGZCLrlwom4SZLNo-image-1630246255900.jpg
https://www.openbsd.org/faq/faq14.html#softraidFDE

First partition of the second hard drive /dev/sdb1 /dev/sd1a

Partition naming /dev/sda1, /dev/sda2, /dev/sda3, etc. /dev/sd0a, /dev/sd0b, /dev/sd0c

As you can see, it's similar but not the same – Linux names devices using letters and partitions are
named by numbers, OpenBSD does the opposite.

We may also want to write some random data to the device, this is a fairly time consuming
process, so get some coffee and do some work while it does it's thing. The bigger the drive, the
longer this will take. The computer's speed also plays a big role. Wait, what is rsd0c? Haven't we
just typed in sd0? Why are we writing something to rsd0c? I had the same questions, but the
explanation is quite simple. R in the beginning stands for raw, as it is a raw (character) device. sd0
was already explained above (first SCSI driver device), but why c at the end? According to
disklabel(5) "The ‘c’ partition is reserved for the entire physical disk". So there we have it, rsd0c
points to the whole raw first hdd handled by the SCSI driver, to which we are currently writing
random data.

Since we have a crap load of time before it finishes, let's dissect the command a little further. dd is
a well known utility from the world of Linux and other UNIX-like operating systems. It can be used
to copy standard input (stdin) to standard output (stdout). These two aforementioned terms usually
mean "what you type" and "what you get" to/from the terminal. In this case we are using the if and
of options of dd which replace stdin and stdout with files. Basically copying the contents of
/dev/urandom to /dev/rsd0c . As you can tell by the fact that urandom resides in /dev, it is some kind
of a device, but not a physical one. Together with random, urandom is a data source device which
provides high quality pseudo-random data. Why is it called pseudo-random? Well, computers can't
actually produce truly random data (but they can use realistically random sources), instead, the
kernel utilizes all sorts of different things that are happening at any given moment (system activity,
network, hadware output) and through some programming and math trickery output seemingly
random data. It is important to make sure that the same data cannot be generated again, because
that could lead to security issues, since actions like generating SSH key pairs use these pseudo-
random data sources. (Imagine you generate an SSH key pair and someone finds a way to get the
same pseudo-random output that you got, which will result in the same SSH key pair being
generated, even though I'm sure there are reasons why this isn't realistically possible, correct me if
I'm wrong about this whole thing). The last option bs specifies the block size (how large the blocks
of data will be)

As far as I know, the T500 doesn't support UEFI, so we'll have to use MBR partitioning table. Use
fdisk to initialize MBR.

-i uses default MBR

cd /dev && sh MAKEDEV sd0

dd if=/dev/urandom of=/dev/rsd0c bs=1m

https://man.openbsd.org/disklabel.5
https://www.ibm.com/docs/en/aix/7.2?topic=redirection-standard-input-standard-output-standard-error-files
https://www.ibm.com/docs/en/aix/7.2?topic=redirection-standard-input-standard-output-standard-error-files
https://man.openbsd.org/fdisk

-y avoids unnecessary yes/no questions.

If you have an UEFI device, use this command:

To create a partition layout, we need to enter disklabel's label editor with the -E option and name
of the device we want to edit.

In the Label editor, enter the following commands (// respresent comments, don't type that into the
terminal)

Let's stop for a moment and let me explain the naming and structure. The device that we are now
working with is sd0. We have just created an a parition on sd0, which resulted in sd0a RAID type
filesystem that spans across the entire disk. Now we will use RAID management interface called
bioctl to create a CRYPTO volume on sd0a. This encrypted volume will appear as another device,
but it's just an encryption layer on the same physical device. Afterwards we can create volumes
and file systems how we want, just like with a regular OpenBSD install without encryption.

If you are using a regular passphrase, the new encrypted device will become sd1. However, since
we want a keydrive, we have to account for the other USB drive. Connect the USB that you want to
use to unlock your laptop/PC and note the assigned name. In my case, it got recognized as sd2.
This is important, becuase now our encrypted volume won't be sd1, but sd3.

Assume the key drive is sd2 and our initial parition is still sd0.

-c sets the RAID level, but we just want an encryption layer, so we will use "C" which
stands for CRYPTO
-k use key disk device sd2a
-l create volume on sd0a with software raid

fdisk -iy sd0

fdisk -iy -g -b 960 sd0

disklabel -E sd0

#sd0> a a // "a" to add partition and name it "a"
offset: [64] // press enter
size: [488391056] // enter
FS type: [4.2BSD] RAID // default is 4.2BSD, but we want to create RAID volume
sd0*> w // write changes to the disk
sd0> q // quit the editor
No label changes.

https://man.openbsd.org/bioctl

This part took me a long time, because I got stuck on the -r option which specifies number of
iterations for the KDF algorithm. What got me thinking was this article, which goes in depth into the
encryption of OpenBSD. What confused me the most is that according to the bioctl man page, the
default number of rounds is 16, however the author of the article mentions "The interesting part is
the number of iterations which directly impact the resistance to brute force attacks. On OpenBSD,
it is set to the hard-coded value of 8192. As discussed previously, this may be changed using bioctl
options." If we are talking about the same thing, why the man page mentions 16 and he says
8192? Also "On my home install, my LUKS volume is configured for about 400,000 iterations, which
is significantly higher than the OpenBSD default.". His closing thoughts are "If using OpenBSD on a
recent computer, bump up the number of PBKDF2 iterations when creating the volume." What does
bump up mean in this case? More than 10 000? 100 000? Anyway, take what you want from this, I
will try 50 000 and see what happens.

Well, this happened.

Of course, we don't have any sd2x devices in /dev, which we can confirm by ls /dev/. Correct that
by issuing

Aaaand, again we fail because:

Sure, even though our key drive showed up as sd2, we haven't touched it with fdisk like we did
with our sd0. If I could read, I would know since the guide clearly mentions it "Initialize your keydisk
with fdisk(8), then use disklabel(8) to create a 1 MB RAID partition for the key data"

I grouped all the commands we need into the following block:

bioctl -c C -r 50000 -k sd2a -l sd0a softraid0

bioctl: could not open sd2a: No such file or directory

cd /dev
sh MAKEDEV sd2

bioctl: could not open sd2a: Device not configured

dd if=/dev/urandom of=/dev/rsd2c bs=1m // rsd2c - our raw sd2 key drive
fdisk -iy sd2
disklabel -E sd2
sd2> a a // create "a" partition
offset: [64] // accept default with enter
size: [7984241] 1M // we only need a small 1M partition
FS type: [4.2BSD] RAID // again, create RAID type partition

https://web.archive.org/web/20200222063308/https://xn--thibaud-dya.fr/openbsd_softraid.html
https://man.openbsd.org/bioctl

Now we can run bioctl again

You should see similar output:

Please note the volume which was created, in this case sd3, you will need it later!

This is everything we had to do in order to setup encryption. What follows is only the installation
process described bellow.

// we can confirm that everything is ok
> p
size offset fstype [fsize bsize cpg]
a: 16001 64 RAID
c: 7987200 0 unused

sd2*> w // write changes
sd2*> q // quit

bioctl -c C -r 50000 -k sd2a -l sd0a softraid0

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/dtrgsNsnH0TMO2Ng-image-1630246283300.jpg

Installation script
Type I to begin the installer. The system will ask you some basic information, stuff in [] is default
when you press enter.

You can pick a different keyboard layout, but I will stick with the default one

Pick a hostname that you like

We are using a minimal image file, therefore we will need internet connection to download all
required file sets, so it makes sense to configure network interface. I will just connect cable to the
on board LAN (em0) and let DHCP give it lease. Unless you want to configure IPv6 stick to default
none

Enter you root account, make sure it is a strong password and store it in a secure place. You will
mostly interact with the system using a regular user and doas to elevate privileges. It is not a
good security practice to log in with root!

This isn't going to be a server, so type no to SSH

I personally had some troubles with xenodm, but they mostly came down to me being incompetent.
Using xenodm is a recommended security practice, instead of starting X server with startx. Not
entirely sure why it's not default.

Choose your keyboard layout ('?' or 'L' for list) [default]

System hostname? (short form, e.g. 'foo')

Available network interfaces are: em0 iwn0 vlan0.
Which network interface do you wish to configure? (or 'done') [em0]
IPv4 address form em0? (or 'dhcp' or 'none') [dhcp]
em0: no link...got link
em0: no lease......got lease
em0: 10.5.51.122 lease accepted from 10.1.4.1 (mac address)
IPv6 address for em0 (or 'autoconf' or 'none') [none]
Which network interface do you wish to configure? (or 'done') [done]
Using DNS domainname your.server
Using DNS nameservers at 10.6.8.77

Password for root account? (will not echo)
Password for root account? (again)

Start sshd(8) by default? [yes] no

https://man.openbsd.org/doas

Setup a user that you will login with.

Timezone settings. If the correct timezone wasn't selected automatically, press ? and pick a correct
one and type it into the installer.

Now make sure you install into the right volume – in our case, sd3 because it's the crypto volume.

We have a MBR machine, so pick MBR

OpenBSD partitioning is something we will leave for another time. This time I'm going with the
default which is surprisingly sane.

Do you want the X Window System to be started by xenodm(1)? [no] yes

Setup a user? (enter a lower-case loginname, or 'no') [no] user

What timezone are you in? ('?' for list) [Europe/Prague]

Available disks are: sd0 sd1 sd2 sd3
Which disk is the root disk? ('?' for details) [sd0] sd3

No valid MBR or GPT
Use (W)whole disk MBR, whole disk (G)PT or (E)dit? [whole]
Setting OpenBSD MBR partition to whole sd3...done.

We are using a minimal instalation file, therefore we need to download required file sets from the
internet – http option. We aren't using any proxy servers, so leave that at default. You can also pick
a server that is closer to you or that you prefer.

When it comes to file sets, most of the time it is easiest to just install them all. On a headless
server installation, you certainly won't need any sets beginning with x, but we are running a laptop
which will need X packages for GUI. I usually leave out game69.tgz and comp69.tgz, but if you
aren't constrained by limited disk space available, just leave it at default. To read more about what
these file sets are, check out OpenBSD FAQ.

Let's install the sets!
Location of sets (cd0 disk http nfs or 'done') [http]
HTTP proxy URL? (e.g. 'http://proxy:8080', or 'none') [none]
HTTP Server? (hostname, list#, 'done' or '?') [ftp.eu.openbsd.org]
Server direcotry? [pub/OpenBSD/6.9/amd64]

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/qUNO0rulyYh3Bke8-image-1630246344600.jpg
https://www.openbsd.org/faq/faq4.html#FilesNeeded

It will take some time to download all the file sets, but after that's done, you should see a similar
screen:

Just press enter to reboot. When it shuts down, remove the installation USB drive, but keep the key
drive in, otherwise it won't boot.

You will be presented this very elegant login screen.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/ldaKI6LRYVmSDkuP-image-1630246400300.jpg
https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/u61dtMIdl5WtPzdg-image-1630246419000.jpg

What comes next looks even better, doesn't it?

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/J1fLkceOxTB1SSOi-image-1630246479300.jpg

Don't worry, this is just the default FVWM windows manager. You can install any other windows
manager you like or rice FVWM, which some people actually do, but I wouldn't recommend it. We
will go over how to install DWM later in another write-up.

Backup the USB key drive
What we should do first before anything else is backup the damned USB key drive. There is no
point of setting anything up when all our work can be lost at any moment due to the USB drive
failure. You may either lose it or it might just die, not uncommon in the world of removable media
devices. The official guide mentions two command for backup and restore, however we need to get
the backup file off the system and store it in a secure place. For that, we will use another USB
drive. This may seem a little daunting especially if you have never manipulated devices on Linux or
BSD systems.

On Linux, there is a nice command to show what devices you have connected and what is on them
– lsblk. Unfortunately, that is not a thing on OpenBSD.

T500# lsblk
ksh: lsblk: not found

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/relXo4P3JzKpZMcn-image-1630246666100.jpg
https://man.openbsd.org/fvwm
https://web.archive.org/web/20210812104914/https://dwm.suckless.org/

First of all login with root, you will most likely need to elevate privileges. It is not a good idea to do
it regulary, but totally fine until we setup doas for our normal user. Before connecting anything,
issue the following commands to see how many devices there are and what they contain. T500 is
our hostname, only type in stuff after the #, if there is no T500 at the front, that usually means it is
an output of the previous command or a special sort-of "nested" or "interactive" command.

or you can list everything from sysctl and filter its output using grep

I currently don't have any USB drives connected (I also disconnected the encryption key drive). sd0
is my SSD, but sd2 is the encryption layer where all partitions reside. You may have noticed that
the encryption layer used to be sd3 during install. That's because these names don't always have
to belong to the same device, they are assigned at boot. In our case, the laptop starts booting from
the SSD – sd0, then finds a USB drive, recognizes it as sd1 and unlocks the encryption layer in
which is another filesystem that gets named sd2.

Plug in the USB drive with the encryption key on it and run the commands above again. You should
now see 4 devices and sd1 should appear.

To make sure you know which device is which, use fdisk on sd1. It should be significantly smaller
than sd2 and sd0.

T500# sysctl hw.diskcount
hw.diskcount=3

T500# sysctl hw.disknames
hw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de

T500# sysctl -a | grep hw.disk
hw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de
hw.diskcount=3

T500# sysctl -a | grep
hw.diskhw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de,sd1:0dfca798643fdjlk5
hw.diskcount=4

T500# fdisk sd1

Plug in the second USB drive that will be used as a backup and repeat the process above.

With all the devices connected, you can make sure once more you know which is which. To get
more info about devices on OpenBSD, use the disklabel command. Running disklabel on all devices
(e.g. disklabel sd0) will reveal what they are, the label line in the output should show this for each:

sd0 – CT250MX500SSD1
sd1 – Flash Disk
sd2 – SR CRYPTO
sd3 – Flash Disk

Example output for sd0:

T500# sysctl -a | grep
hw.diskhw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de,sd1:0dfca798643fdjlk5,sd3:
hw.diskcount=5

T500# disklabel sd0
/dev/rsd0c:
type: SCSI
disk: SCSI disk
label: CT250MX500SSD1
duid: f985648fds15dsf
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 240
sectors/cylinder: 15120
cylinders: 32301
total sectors: 488397168
boundstart: 64
boundend: 488391120
drivedata: 0

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/YL7yCk0Pzp8cJji7-image-1630255816600.jpg
https://man.openbsd.org/disklabel

Mount the backup USB
Encryption key drive is sd1 and the backup drive is sd3. Note that the backup drive already has a
FAT32 partition set up from Windows, if it's a unformatted drive, either format it in OpenBSD using
fdisk and disklabel or on another OS. When running disklabel on sd3 we can see the following
partitions:

Create a mount point in /mnt:

Mount the MSDOS partition of sd3 to /mnt/backup_drive

You can now cd into the mount point, there might be some kind of System Volume Information
leftover from Windows.

Write data to the backup USB
Again, use the dd command with a couple of options according to the official guide. if takes data
from the a partition on sd1, which is our key drive and writes it using of to our backup drive
mounted at /mnt/backup_drive to a file openbsd-keydisk_backup.img. The name is completely up
to you of course.

Check if there is a new file in /mnt/backup_drive directory, you should see something like this:

16 partitions:
#			size			offset	fstype [fzize bsize cpg]
 a:		488391056				64	 RAID
 c:		488397168				 0	unused

i:		7862272			2048 MSDOS

mkdir /mnt/backup_drive

mount -t msdos /dev/sd3i /mnt/backup_drive

T500# cd /mnt/backup_drive
T500# ls
System Volume Information

T500# dd bs=8192 skip=1 if=/dev/rsd1a of=/mnt/backup_drive/openbsd-keydisk_backup.img
999+1 records in
999+1 records out
8184320 bytes transferred in 2.982 secs (2744288 bytes/sec)

Before you shutdown you PC, don't forget to unmount the USB drive.

In case you run into the following error,

make sure you aren't in the directory with your terminal and move somewhere else with cd.

Test the backup
You can shutdown and try booting into the system using the backup USB, but you will quickly
realize that it doesn't work. We haven't created an identical backup key drive, only an image of the
original one, which we saved to the backup USB. It is even viewable in Windows since it's just a
FAT32 partition, so store it in a secure place.

With that in mind, how do you now know that the restore command will work? It wouldn't be a
happy moment to discover that your backup wasn't working when something happens. Well, if you
want to have peace in mind, get another blank USB drive.

Plug the backup USB and the new testing USB into the PC. Find out which is which using commands
you already know (disklabel). In my case, the new USB is easily recongizable because its bigger
and has a different label. We want to create a complete copy of the original key drive, not just a
regular flash drive with a backup file like we just did.

Initialize MBR on the new drive (sd3). THIS WILL DELETE EVERYTHING ON THE USB DRIVE!
But I hope you know that.

Open disklabel editor to create a RAID partition (same process when we were creating the first key
drive during installation).

T500# ls -lah
total 16012
drwxr-xr-x	1	root	wheel	4.0K	Jan 1	1980 .
drwxr-xr-x	3	root	wheel	512B	Aug 29	17:34 ..
drwxr-xr-x	1	root	wheel	4.0K	Aug 29	17:23 System Volume Information
-rw-r--r--	1	root	wheel	7.8M	Aug 29	17:42 openbsd-keydisk_backup.img

umount /mnt/backup_drive

umount: /mnt/backup_drive: Device busy

T500# fdisk -iy sd3
Writing MBR at offset 0.

T500# disklabel -E sd3
Label editor (enter '?' for help at any prompt)

The drive is now prepared. Now mount the backup drive again. The backup_drive folder should still
be in /mnt. The backup drive is sd1 in my case.

Write the image file to the new USB drive (a partition of the raw sd3 device)

Unmount the USB drive with the backup image file and shutdown. Only leave in the third USB
which we wrote the backup into.

If you followed everything correctly, the system should now boot with the new USB drive! Now you
have two drives for decrypting and one backup. Because you now know that the backup image file
is working, you can scrape the second decrypting USB and store the backup image file in a secure
place. In case something happens to the original decrypting drive, you have a tested backup.

This is it for now, to make the laptop a bit more usable, check out my other guides :)

sd3> a a
offset: [64] // enter
size: [30025421] 1M // we only want a small partition
FS type: [4.2BSD] RAID // RAID partition
sd3*> w // write changes
sd3> q // quit

mount -t msdos /dev/sd1i /mnt/backup_drive

dd bs=8192 seek=1 if=/mnt/backup_drive/openbsd-keydisk_backup.img of=/dev/rsd3a
999+1 records in
999+1 records out
8184320 bytes transferred in 2.822 secs (2899937 bytes/sec)

T500# umount /mnt/backup_drive
shutdown -p now

