Installation

¢ Installing OpenBSD 6.9 on a laptop with encryption

Installing OpenBSD 6.9 on a
laptop with encryption

Lately, I've been looking into some old laptops which | could spend my upcoming college years
with. | wanted something cheap, but also good enough that | could use it for basic university
related work. Of couse | could just buy a new low-end Windows laptop and be happy, but that
would be a waste of money. Instead, | searched through used market for an old ThinkPad, T500 in
particular. If you are a bit confused or haven't heard of Lenovo's ThinkPads and why they have a

special place among many, | recommend you check out this guide. There are many newer models
than the 2009's T500, however T500 seems to be the last "Librebootable" 15" ThinkPad. Flashing
Libreboot is something | would love to do as well, but currently don't have the right tools to

complete the process documented on the Libreboot wiki here. After T500 there are still a couple of

pretty decent ThinkPad models, altough it is not possible to install completely Libre firmware on
them.

Downloading OpenBSD

Downloading OpenBSD is pretty straightforward, just prepare two USB drives - one which we will
boot the installer from and the other for our encryption key.

Head over to the download page and click on minirootXX.img

n1|n1ruut“ img

alpha] [amd64] [arm64] [armv7] [1386 sk] [loongson] [luna

The same as abm e, but file sets are not leudv:d They can be pulled dmx n from thP thrnrt or j:n i a 1~ weal disk

If you have a 64-bit machine, which the T500 is, select amdé4. This will be a minimal intallation
and we will only download file sets that we want during the install. If you do not care about this,
you can pick one with the file sets already included.

For those unfortunate people who still use Windows on their main machine like me, you may use
utility like Rufus to burn the image to a USB. Just pick the file and drive, make sure to choose the
right one, this will overwrite all data on the USB drive.

https://web.archive.org/web/20210228073512/https://www.bobble.tech/free-stuff/used-thinkpad-buyers-guide
https://web.archive.org/web/20210821235930/https://libreboot.org/docs/install/t500_external.html
https://www.openbsd.org/faq/faq4.html#Download
https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/WxIAQY7lqa12dtpE-image-1630068858200.png

gi? Rufus 3.9.1624 (Portable) — o

Drive Properties

Device
' NO_LABEL (k) [16 GE] v @
Boot selection
miniroot6g.img v| @ | smect
Partiticn scheme Target system

MER. BIOS (or UEFI-CSM) [

~ Hide advanced drive properties

[] List USE Hard Drives
Add fixes for old BIOSes (extra partition, align, etc.)
Use Rufus MBR with BIOS (D 0580 (Default)

Format Options

YVolume label

16 GB
File systern Cluster size
FAT32 (Default) 8192 bytes (Default)

w Show advanced format options

Status
@ ® = START CLOSE

2 devices found 00:00:02

Once we have the USB ready, we can plug it into the T500, press F12 and choose to boot from it.
We will be greeted by this screen:

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/sjtjYX8MX5PzcI0S-image-1630068789500.png

nliguration 1 intertface H "Intel UHI

at uhci5: USB revision 1.8
uwhub? at usb? configuration 1 interface B8 "Intel UHCI root hub" rev 1.86
dr 1
isaB at mainbusB
pckbcB at isaB port 8x68/5 irq 1 irq 12
pckbdB at pckbcB (kbd slot)
wskbdB at pckbdB: console keyboard, using wsdisplayl

unass@ at uhubl port 2 configuration 1 interface @ "SanDisk Ultra USB 3.8" rev
.1871.688 addr 2

umassB: using SCSI over Bulk-Only
scsibusl at umass@: 2 targets, initiator @

sd1l at scsibusl targ 1 lun B: <SanDisk, Ultra USB 3.8, 1.88> removable serial.fd
815591201287113524

sd1: 14663MB, 512 bytes/sector, 38031258 sectors
softraid@ at root

scsibusZ at softraidd: 256 targets

root on rdBa swap on rddb dump on rd@b

HARNING: CHECK AND RESET THE DATE?

erase "7, werase ‘W, kill “U, intr “C, status “T

Helcome to the OpenBSD/amd64 6.9 installation program.
(I)nstall, (U)pgrade, (Alutoinstall or (S)hell? _

Installing OpenBSD

Full disk encryption with key (FDE)

I'm using a laptop, so it would be advisable to implement some sort of encryption in case it gets

lost or someone steals it. We will follow the official guide here (with a little modification) and setup
FDE with a USB drive for convenience, so that we don't have to type the encryption password every
time and instead rely on the possesion of the USB drive.

Jump out of the installer into the shell by typing S
Begin the proces by creating a device node. You may be familiar with the naming convetion from

Linux. sd is essentially SCSI disk driver. Here's a little comparasion of naming drives Linux vs
OpenBSD:

Linux OpenBSD

First hard drive /dev/sda /dev/sd0

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/vGZCLrlwom4SZLNo-image-1630246255900.jpg
https://www.openbsd.org/faq/faq14.html#softraidFDE

First partition of the second hard drive = /dev/sdbl /dev/sdla

Partition naming /dev/sdal, /dev/sda2, /dev/sda3, etc. /dev/sd0a, /dev/sdOb, /dev/sdOc

As you can see, it's similar but not the same - Linux names devices using letters and partitions are
named by numbers, OpenBSD does the opposite.

cd /dev && sh MAKEDEV sd0

We may also want to write some random data to the device, this is a fairly time consuming
process, so get some coffee and do some work while it does it's thing. The bigger the drive, the
longer this will take. The computer's speed also plays a big role. Wait, what is rsdOc? Haven't we
just typed in sd0? Why are we writing something to rsd0c? | had the same questions, but the
explanation is quite simple. R in the beginning stands for raw, as it is a raw (character) device. sd0
was already explained above (first SCSI driver device), but why ¢ at the end? According to

disklabel(5) "The ‘c’ partition is reserved for the entire physical disk". So there we have it, rsd0c
points to the whole raw first hdd handled by the SCSI driver, to which we are currently writing
random data.

dd if=/dev/urandom of=/dev/rsd0c bs=1m

Since we have a crap load of time before it finishes, let's dissect the command a little further. dd is
a well known utility from the world of Linux and other UNIX-like operating systems. It can be used

to copy standard input (stdin) to standard output (stdout). These two aforementioned terms usually

mean "what you type" and "what you get" to/from the terminal. In this case we are using the if and
of options of dd which replace stdin and stdout with files. Basically copying the contents of
/dev/urandom to /dev/rsdOc . As you can tell by the fact that urandom resides in /dev, it is some kind
of a device, but not a physical one. Together with random, urandom is a data source device which
provides high quality pseudo-random data. Why is it called pseudo-random? Well, computers can't
actually produce truly random data (but they can use realistically random sources), instead, the
kernel utilizes all sorts of different things that are happening at any given moment (system activity,
network, hadware output) and through some programming and math trickery output seemingly
random data. It is important to make sure that the same data cannot be generated again, because
that could lead to security issues, since actions like generating SSH key pairs use these pseudo-
random data sources. (Imagine you generate an SSH key pair and someone finds a way to get the
same pseudo-random output that you got, which will result in the same SSH key pair being
generated, even though I'm sure there are reasons why this isn't realistically possible, correct me if
I'm wrong about this whole thing). The last option bs specifies the block size (how large the blocks
of data will be)

As far as | know, the T500 doesn't support UEFI, so we'll have to use MBR partitioning table. Use
fdisk to initialize MBR.

e -i uses default MBR

https://man.openbsd.org/disklabel.5
https://www.ibm.com/docs/en/aix/7.2?topic=redirection-standard-input-standard-output-standard-error-files
https://www.ibm.com/docs/en/aix/7.2?topic=redirection-standard-input-standard-output-standard-error-files
https://man.openbsd.org/fdisk

e -y avoids unnecessary yes/no questions.

fdisk -iy sd0O

If you have an UEFI device, use this command:

fdisk -iy -g -b 960 sd0

To create a partition layout, we need to enter disklabel's label editor with the -E option and name
of the device we want to edit.

disklabel -E sd0

In the Label editor, enter the following commands (// respresent comments, don't type that into the
terminal)

#sd0> a a // "a" to add partition and name it "a"

offset: [64] // press enter

size: [488391056] // enter

FS type: [4.2BSD] RAID // default is 4.2BSD, but we want to create RAID volume
sd0*> w // write changes to the disk

sd0> q // quit the editor

No label changes.

Let's stop for a moment and let me explain the naming and structure. The device that we are now
working with is sd0. We have just created an a parition on sd0, which resulted in sd0a RAID type
filesystem that spans across the entire disk. Now we will use RAID management interface called

bioctl to create a CRYPTO volume on sd0a. This encrypted volume will appear as another device,
but it's just an encryption layer on the same physical device. Afterwards we can create volumes
and file systems how we want, just like with a regular OpenBSD install without encryption.

If you are using a regular passphrase, the new encrypted device will become sd1. However, since
we want a keydrive, we have to account for the other USB drive. Connect the USB that you want to
use to unlock your laptop/PC and note the assigned name. In my case, it got recognized as sd2.
This is important, becuase now our encrypted volume won't be sd1, but sd3.

Assume the key drive is sd2 and our initial parition is still sdO.

e -C sets the RAID level, but we just want an encryption layer, so we will use "C" which
stands for CRYPTO

e -k use key disk device sd2a

e -| create volume on sdOa with software raid

https://man.openbsd.org/bioctl

This part took me a long time, because | got stuck on the -r option which specifies number of
iterations for the KDF algorithm. What got me thinking was this article, which goes in depth into the

encryption of OpenBSD. What confused me the most is that according to the bioctl man page, the

default number of rounds is 16, however the author of the article mentions "The interesting part is
the number of iterations which directly impact the resistance to brute force attacks. On OpenBSD,
it is set to the hard-coded value of 8192. As discussed previously, this may be changed using bioctl
options." If we are talking about the same thing, why the man page mentions 16 and he says
81927 Also "On my home install, my LUKS volume is configured for about 400,000 iterations, which
is significantly higher than the OpenBSD default.". His closing thoughts are "If using OpenBSD on a
recent computer, bump up the number of PBKDF2 iterations when creating the volume." What does
bump up mean in this case? More than 10 000? 100 000? Anyway, take what you want from this, |
will try 50 000 and see what happens.

bioctl -c C -r 50000 -k sd2a -I sd0Oa softraid0

Well, this happened.

bioctl: could not open sd2a: No such file or directory

Of course, we don't have any sd2x devices in /dev, which we can confirm by Is /dev/. Correct that
by issuing

cd /dev
sh MAKEDEV sd2

Aaaand, again we fail because:

bioctl: could not open sd2a: Device not configured

Sure, even though our key drive showed up as sd2, we haven't touched it with fdisk like we did
with our sdO. If | could read, | would know since the guide clearly mentions it "Initialize your keydisk
with fdisk(8), then use disklabel(8) to create a 1 MB RAID partition for the key data"

| grouped all the commands we need into the following block:

dd if=/dev/urandom of=/dev/rsd2c bs=1m // rsd2c - our raw sd2 key drive
fdisk -iy sd2

disklabel -E sd2

sd2> a a // create "a" partition

offset: [64] // accept default with enter

size: [7984241] 1M // we only need a small 1M partition

FS type: [4.2BSD] RAID // again, create RAID type partition

https://web.archive.org/web/20200222063308/https://xn--thibaud-dya.fr/openbsd_softraid.html
https://man.openbsd.org/bioctl

// we can confirm that everything is ok
>p

size offset fstype [fsize bsize cpg]
a: 16001 64 RAID

c: 7987200 0 unused

sd2*> w // write changes

sd2*> q // quit

Now we can run bioctl again

bioctl -c C -r 50000 -k sd2a - sdOa softraid0

You should see similar output:

Difset: [(b4]
size: [7984241]1 1M
FS type: [4.2BSD] RAID
sdZ*> p
OpenBSD area: 64-79843085; size: 7984241; free: 79682408
size offset fstype [fsize bsiZ
a: 166081 64 RAID
G 79872808 B unused
sdZ*> uw
1 VA |
No label changes.
bioctl —c C -r 50888 -k sd2a -1 sdBa softraidd
<d3 at scsibus2 targ 1 lun 8: <OPENBSD, SR CRYPTO, 686>
sd3: 238471MB, 512 bytes/sector, 488398528 sectors
softraid@: CRYPTO volume attached as sd3
#

Please note the volume which was created, in this case sd3, you will need it later!

This is everything we had to do in order to setup encryption. What follows is only the installation
process described bellow.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/dtrgsNsnH0TMO2Ng-image-1630246283300.jpg

Installation script

Type | to begin the installer. The system will ask you some basic information, stuff in [] is default
when you press enter.

You can pick a different keyboard layout, but | will stick with the default one

Choose your keyboard layout ('?' or 'L' for list) [default]

Pick a hostname that you like

System hostname? (short form, e.g. 'foo’)

We are using a minimal image file, therefore we will need internet connection to download all
required file sets, so it makes sense to configure network interface. | will just connect cable to the
on board LAN (em0) and let DHCP give it lease. Unless you want to configure IPv6 stick to default
none

Available network interfaces are: em0 iwnO vlanO.

Which network interface do you wish to configure? (or 'done') [emO0]
IPv4 address form em0? (or 'dhcp' or 'none') [dhcp]

emO0: no link...got link

emO0: no lease...... got lease

emO0: 10.5.51.122 lease accepted from 10.1.4.1 (mac address)

IPv6 address for em0 (or 'autoconf' or 'none') [nonel

Which network interface do you wish to configure? (or 'done') [done]
Using DNS domainname your.server

Using DNS nameservers at 10.6.8.77

Enter you root account, make sure it is a strong password and store it in a secure place. You will

mostly interact with the system using a regular user and doas to elevate privileges. It is not a
good security practice to log in with root!

Password for root account? (will not echo)

Password for root account? (again)

This isn't going to be a server, so type no to SSH

Start sshd(8) by default? [yes] no

| personally had some troubles with xenodm, but they mostly came down to me being incompetent.
Using xenodm is a recommended security practice, instead of starting X server with startx. Not
entirely sure why it's not default.

https://man.openbsd.org/doas

Do you want the X Window System to be started by xenodm(1)? [no] yes

Setup a user that you will login with.

Setup a user? (enter a lower-case loginname, or 'no') [no] user

Timezone settings. If the correct timezone wasn't selected automatically, press ? and pick a correct
one and type it into the installer.

What timezone are you in? ('?' for list) [Europe/Prague]

Now make sure you install into the right volume - in our case, sd3 because it's the crypto volume.

Available disks are: sd0 sd1 sd2 sd3
Which disk is the root disk? ('?' for details) [sd0] sd3

We have a MBR machine, so pick MBR

No valid MBR or GPT
Use (W)whole disk MBR, whole disk (G)PT or (E)dit? [whole]
Setting OpenBSD MBR partition to whole sd3...done.

OpenBSD partitioning is something we will leave for another time. This time I'm going with the
default which is surprisingly sane.

er" enter a lower-case logliwname, Oor no
name for user marek? [marek]l
Passuword for user marek? (will not echo)
Password for user marek? (again)
Hhat timezone are you in? ('?' for list) [Europe/Prague]l

Available disks are: sd@ sdl S(}Z‘Sd"l .

H:?éhidisk is the root disk? ('? for details) [sdB] sd3
l1id MBR or GPT. .

uzeviuihole disk MBR, whole disk (G)PT or (E)dit? [wholel

Setting OpenBSD MBR partition to3uhole sd3. . .done.

- t I sd3 is: y
ke allocategi;:gou = offset fstype [fsize bsize
i 1.66 64 4.2BSD 2848 16384

4.1G 2897216 swap
232.9G ® unused
4.08G6 19759648 4.2BSD 20848 16384
1. 19148224 4.2BSD 2848 16384
: 43813956 4.2BSD 2048 16384
56395968 4.2BSD 2848 16384
58493128 4.2BSD 2848 16384
199436168 4.ZBSD 20848 16384
; 194630464 4.28SD 2848 16384
: 177.86 11721337 4.2850 %gs)ﬁsgzm .
uUse (A)uto layout, (E)dit auto layout, or creaie

/var

usr
susr7X11R6
susr7local
Zusr/src
susr7ob j
7home

al ..

-

a:
b:
c:
d:
e:
f:
g:
h:
i:
3
k-

) b

We are using a minimal instalation file, therefore we need to download required file sets from the

internet - http option. We aren't using any proxy servers, so leave that at default. You can also pick
a server that is closer to you or that you prefer.

Let's install the sets!

Location of sets (cd0 disk http nfs or 'done') [http]

HTTP proxy URL? (e.g. 'http://proxy:8080', or 'none') [none]
HTTP Server? (hostname, list#, 'done' or '?') [ftp.eu.openbsd.org]

Server direcotry? [pub/OpenBSD/6.9/amd64]

When it comes to file sets, most of the time it is easiest to just install them all. On a headless
server installation, you certainly won't need any sets beginning with x, but we are running a laptop
which will need X packages for GUI. | usually leave out game69.tgz and comp69.tgz, but if you
aren't constrained by limited disk space available, just leave it at default. To read more about what
these file sets are, check out OpenBSD FAQ.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/qUNO0rulyYh3Bke8-image-1630246344600.jpg
https://www.openbsd.org/faq/faq4.html#FilesNeeded

i i ‘all’. De-select
ts by entering a set name, a file name pattern or al , :
22:§C;gszr:pe?\ding a ’E’, e.g.: '-gamex’. Selected sets are labelled '[X]1 .

.tgz [X]1 game69.tgz [X] xfont69.tgz
E:} gz:.mp ::: :zi;gg.tgz X1 gbaseﬁg.tgz [X] xservB9.tgz
[X] bsd.rd D,tl nar’lGth'[z X1 xsha:eﬁg;g:
'E;t;e;:l? Gy’ abor‘:Xlo;aseGQdoTt;z[don?]l gmﬁg.tgzp [X] xfont69.tgz
[X] bsd.mp [1 compbl.tgz [X] xbase69.tgz [X] xserv69.tgz
[X] bsd.rd [X]1 man69. tgz [X] xshare69.tgz
Set name(s)? (or 'abort’ or ‘done’) [domel _

It will take some time to download all the file sets, but after that's done, you should see a similar
screen:

! "?%l-ini bsd

installing b d . mp

Installing bsd.rd

Installing baseB9. tgz

Extracting etc.tgz 187 80 : 80
Installing man69. tgz % 7568 KB H;; Hi
Installing xbaseb9. tgz % 29789 KB A8 :a3
Extracting xetc.tgz % 7181 @6 :080
Installing xshare69. tgz 4582 KB 86 :01
Installing xfontB9. tgz 39342 KB 80:82
Installing xserv69.tgz : 18351 KB 08 :82
Location of sets? (cd® disk http nfs or "done’) [donel

Time appears wrong. Set to 'Fri Aug 27 28:23:27 CEST 26821°7 [yes]

Saving configuration files... done.

Making all device nodes... done.

Multiprocessor machine; using bsd.mp instead of bsd.

Relinking to create unique kernel... dome.

CONGRATULATIONS? Your OpenBSD install has been successfully completed!

When you login to your new systen the first time, please read your mail

using the 'mail’ command.

Exit to (S)hell, (Halt or (R)eboot? [rebootl _

Just press enter to reboot. When it shuts down, remove the installation USB drive, but keep the key
drive in, otherwise it won't boot.

You will be presented this very elegant login screen.

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/ldaKI6LRYVmSDkuP-image-1630246400300.jpg
https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/u61dtMIdl5WtPzdg-image-1630246419000.jpg

lIconsole log for

What comes next looks even better, doesn't it?

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/J1fLkceOxTB1SSOi-image-1630246479300.jpg

Don't worry, this is just the default FVYWM windows manager. You can install any other windows

manager you like or rice FVWM, which some people actually do, but | wouldn't recommend it. We

will go over how to install DWM later in another write-up.

Backup the USB key drive

What we should do first before anything else is backup the damned USB key drive. There is no
point of setting anything up when all our work can be lost at any moment due to the USB drive
failure. You may either lose it or it might just die, not uncommon in the world of removable media
devices. The official guide mentions two command for backup and restore, however we need to get
the backup file off the system and store it in a secure place. For that, we will use another USB
drive. This may seem a little daunting especially if you have never manipulated devices on Linux or
BSD systems.

On Linux, there is a nice command to show what devices you have connected and what is on them
- Isblk. Unfortunately, that is not a thing on OpenBSD.

T5004# Isblk
ksh: Isblk: not found

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/relXo4P3JzKpZMcn-image-1630246666100.jpg
https://man.openbsd.org/fvwm
https://web.archive.org/web/20210812104914/https://dwm.suckless.org/

First of all login with root, you will most likely need to elevate privileges. It is not a good idea to do
it regulary, but totally fine until we setup doas for our normal user. Before connecting anything,
issue the following commands to see how many devices there are and what they contain. T500 is
our hostname, only type in stuff after the #, if there is no T500 at the front, that usually means it is
an output of the previous command or a special sort-of "nested" or "interactive" command.

T500# sysctl hw.diskcount

hw.diskcount=3

T500# sysctl hw.disknames
hw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de

or you can list everything from sysctl and filter its output using grep

T500# sysctl -a | grep hw.disk
hw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de

hw.diskcount=3

| currently don't have any USB drives connected (I also disconnected the encryption key drive). sd0
is my SSD, but sd2 is the encryption layer where all partitions reside. You may have noticed that
the encryption layer used to be sd3 during install. That's because these names don't always have
to belong to the same device, they are assigned at boot. In our case, the laptop starts booting from
the SSD - sd0, then finds a USB drive, recognizes it as sd1 and unlocks the encryption layer in
which is another filesystem that gets named sd2.

Plug in the USB drive with the encryption key on it and run the commands above again. You should
now see 4 devices and sd1 should appear.

T500# sysctl -a | grep
hw.diskhw.disknames=sd0:f985648fds15dsf,cd0:,sd2:d5876a3854643fc3de,sd1:0dfca798643fdjlk5

hw.diskcount=4

To make sure you know which device is which, use fdisk on sd1. It should be significantly smaller
than sd2 and sdO.

T500# fdisk sd1

Plug in the second USB drive that will be used as a backup and repeat the process above.

T5004# sysctl -a | grep
hw.diskhw.disknames=sd0:f985648fds15dsf,cd0:,5sd2:d5876a3854643fc3de,sd1:0dfca798643fdjlk5,sd3:

hw.diskcount=5

With all the devices connected, you can make sure once more you know which is which. To get

more info about devices on OpenBSD, use the disklabel command. Running disklabel on all devices
(e.g. disklabel sd0) will reveal what they are, the /abel line in the output should show this for each:

sd0 - CT250MX500SSD1
sd1 - Flash Disk

sd2 - SR CRYPTO

sd3 - Flash Disk

Example output for sd0:

T5004# disklabel sd0

/dev/rsdOc:

type: SCSI

disk: SCSI disk

label: CT250MX500SSD1
duid: f985648fds15dsf
flags:

bytes/sector: 512
sectors/track: 63
tracks/cylinder: 240
sectors/cylinder: 15120
cylinders: 32301

total sectors: 488397168
boundstart: 64
boundend: 488391120

drivedata: 0

https://selfhostedfuture.xyz/uploads/images/gallery/2021-08/YL7yCk0Pzp8cJji7-image-1630255816600.jpg
https://man.openbsd.org/disklabel

16 partitions:

#[{1size[IToffset[Ifstype [fzize bsize cpg]
a:[11488391056[111164] RAID
C:[T¥88397168[I11] O[Junused

Mount the backup USB

Encryption key drive is sd1 and the backup drive is sd3. Note that the backup drive already has a
FAT32 partition set up from Windows, if it's a unformatted drive, either format it in OpenBSD using
fdisk and disklabel or on another OS. When running disklabel on sd3 we can see the following
partitions:

i:[1]7862272[11]2048 MSDOS

Create a mount point in /mnt:

mkdir /mnt/backup_drive

Mount the MSDOS partition of sd3 to /mnt/backup _drive

mount -t msdos /dev/sd3i /mnt/backup_drive

You can now cd into the mount point, there might be some kind of System Volume Information
leftover from Windows.

T500# cd /mnt/backup_drive
T500# Is

System Volume Information

Write data to the backup USB

Again, use the dd command with a couple of options according to the official guide. if takes data
from the a partition on sd1, which is our key drive and writes it using of to our backup drive
mounted at /mnt/backup_drive to a file openbsd-keydisk backup.img. The name is completely up
to you of course.

T5004# dd bs=8192 skip=1 if=/dev/rsd1la of=/mnt/backup_drive/openbsd-keydisk backup.img
999+1 records in

999+1 records out

8184320 bytes transferred in 2.982 secs (2744288 bytes/sec)

Check if there is a new file in /mnt/backup_drive directory, you should see something like this:

T5004# Is -lah

total 16012

drwxr-xr-xJ1Jroot[wheel}4.0KJan 1[]1980 .
drwxr-xr-x[3[root[wheel[J512B[JAug 29[]17:34 ..
drwxr-xr-xJ1Jroot[wheel}4.0KJAug 29[]17:23 System Volume Information
-rw-r--r--[J1Jrootjwheel[J7.8M[JAug 29[]17:42 openbsd-keydisk_backup.img

Before you shutdown you PC, don't forget to unmount the USB drive.

umount /mnt/backup_drive

In case you run into the following error,

umount: /mnt/backup_drive: Device busy

make sure you aren't in the directory with your terminal and move somewhere else with cd.

Test the backup

You can shutdown and try booting into the system using the backup USB, but you will quickly
realize that it doesn't work. We haven't created an identical backup key drive, only an image of the
original one, which we saved to the backup USB. It is even viewable in Windows since it's just a
FAT32 partition, so store it in a secure place.

With that in mind, how do you now know that the restore command will work? It wouldn't be a
happy moment to discover that your backup wasn't working when something happens. Well, if you
want to have peace in mind, get another blank USB drive.

Plug the backup USB and the new testing USB into the PC. Find out which is which using commands
you already know (disklabel). In my case, the new USB is easily recongizable because its bigger
and has a different label. We want to create a complete copy of the original key drive, not just a
regular flash drive with a backup file like we just did.

Initialize MBR on the new drive (sd3). THIS WILL DELETE EVERYTHING ON THE USB DRIVE!
But | hope you know that.

T500# fdisk -iy sd3
Writing MBR at offset 0.

Open disklabel editor to create a RAID partition (same process when we were creating the first key
drive during installation).

T500# disklabel -E sd3

Label editor (enter '?' for help at any prompt)

sd3>aa

offset: [64] // enter

size: [30025421] 1M // we only want a small partition
FS type: [4.2BSD] RAID // RAID partition

sd3*> w // write changes

sd3> g // quit

The drive is now prepared. Now mount the backup drive again. The backup_drive folder should still
be in /mnt. The backup drive is sd1 in my case.

mount -t msdos /dev/sd1i /mnt/backup_drive

Write the image file to the new USB drive (a partition of the raw sd3 device)

dd bs=8192 seek=1 if=/mnt/backup_drive/openbsd-keydisk backup.img of=/dev/rsd3a
999+1 records in
999+1 records out

8184320 bytes transferred in 2.822 secs (2899937 bytes/sec)

Unmount the USB drive with the backup image file and shutdown. Only leave in the third USB
which we wrote the backup into.

T500# umount /mnt/backup_drive

shutdown -p now

If you followed everything correctly, the system should now boot with the new USB drive! Now you
have two drives for decrypting and one backup. Because you now know that the backup image file
is working, you can scrape the second decrypting USB and store the backup image file in a secure
place. In case something happens to the original decrypting drive, you have a tested backup.

This is it for now, to make the laptop a bit more usable, check out my other guides :)

