
Debian
Book about one of the oldest and arguably the most stable Linux distributions in existence.

Updates & Upgrades

Upgrading Debian 10 (Buster) to Debian 11 (Bullseye)
Upgrading Debian kernel (5.4 to 5.10)
Upgrade Debian 10 to 11 (speedrun)

Apt

Enable backports in Debian 11
Enable testing repo in stable Debian 11

Nginx

Missing /etc/nginx folder
Hide Nginx version
Generate DH parameters (dhparam.pem)

Tips and tools

Edit /etc/passwd correctly
Create multiple parent directories with mkdir
Make a Linux VM template unique

Updates & Upgrades

Updates & Upgrades

Upgrading Debian 10
(Buster) to Debian 11
(Bullseye)
I am a big fan of Debian in the server environment, mainly due to its great record in stability,
security and other important aspects like having a huge number of tutorials and guides available
online. Since the release of Debian 11 (codenamed Bullseye), I've been thinking about upgrading to
the latest version. I will start on one of my VPS servers to test how is everything working. There are
number of tutorials online explaining the exact same thing. Feel free to follow which you find the
best, this is mainly for my documentation.

Summary
1. Backup your system – You never know what can go wrong, be prepared.
2. Edit apt's sources.list – In order to fetch and install packages meant for Debian 11, we

need to change some lines in the /etc/apt/sources.list file.
3. Update software repos – Make apt aware of the changes you've made in sources.list

and upgrade existing packages.
4. Upgrade the system itself – After upgrading packages, you can upgrade the system as

well.

Backup your system

Before you begin the upgrade process, make sure you know/have these two things:

Standard Debian installation with the default kernel – in this case it is probably fine to
update with SSH access only.

However, if you are using a different kernel or backports, I recommend you also have
access to the boot process and recovery in case your system doesn't boot after the
upgrade.

Unless you actually have a testing environment, where loss of files won't cause even a minimal
headache, please backup your data. In most cases, it is OK to at least backup all configuration files
for any services running on the server. You can always rebuild the server using them in case
something bad happens. Always have a precise upgrade plan when upgrading production servers,
including plans B and C and D, depenging on the criticality of the service you are running. I am
upgrading a server with two services only I use, so I can afford a very simple "backup" – cat all
config files into terminal and copy them to notepad on my workstation, that's it. You can also setup
something fancier like rsnapshot or restic.

Prepare for the changes

Check system version
There are numerous ways (from basic to more fancy) to check what version and distribution you
are running, try running couple of these:

If you don't have that installed like me, try on of the other options. Simply cat /etc/debian_version
or /etc/os-release. The latter will give you more detailed information.

You should also probably know about the uname command, combined with the -a (--all) prints
some system information.

lsb_release -a

$ cat /etc/debian_version
10.10

$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 10 (buster)"
NAME="Debian GNU/Linux"
VERSION_ID="10"
VERSION="10 (buster)"
VERSION_CODENAME=buster
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

$ uname -a
Linux hostname 5.4.0-74-generic #83~18.04.1-Ubuntu SMP Tue May 11 16:01:00 UTC 2021 x86_64 GNU/Linux

https://rsnapshot.org/
https://restic.net/

If you run this command on a vanilla Debian 10 distribution, you will most likely see kernel version
4.19, which is the version Debian 10 shipped with. For some reason, my VPS provider is using a
newer kernel and somehow managed to throw Ubuntu into the mix, even though the system
clearly runs on Debian, based on the multiple command outputs above.

Update and upgrade existing software
It is recommended before installing any new packages or performing a large update such as this
one to update and upgrade the existing system.

First of all, update apt repositories. Unless you are using Nginx from their official repository instead
from the Debian one, you won't see the lines containing nginx.

Upgrade existing packages with apt upgrade.

$ sudo apt update
Get:1 https://nginx.org/packages/mainline/debian buster InRelease [3,607 B]
Hit:2 http://deb.debian.org/debian buster InRelease
Hit:3 http://security.debian.org/debian-security buster/updates InRelease
Hit:4 http://deb.debian.org/debian buster-backports InRelease
Get:5 https://nginx.org/packages/mainline/debian buster/nginx amd64 Packages [49.9 kB]
Fetched 53.5 kB in 1s (47.0 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done

$ sudo apt upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
 nginx
1 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 880 kB of archives.
After this operation, 0 B of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 https://nginx.org/packages/mainline/debian buster/nginx amd64 nginx amd64 1.21.3-1~buster [880 kB]
Fetched 880 kB in 11s (83.5 kB/s)
debconf: delaying package configuration, since apt-utils is not installed
(Reading database ... 42829 files and directories currently installed.)
Preparing to unpack .../nginx_1.21.3-1~buster_amd64.deb ...

If you want to know the difference between apt upgrade and apt dist-upgrade, read this paragraph
from apt's man page:

"dist-upgrade in addition to performing the function of upgrade, also intelligently handles changing
dependencies with new versions of packages; apt-get has a "smart" conflict resolution system, and
it will attempt to upgrade the most important packages at the expense of less important ones if
necessary. So, dist-upgrade command may remove some packages. The /etc/apt/sources.list file
contains a list of locations from which to retrieve desired package files. See also apt_preferences(5)
for a mechanism for overriding the general settings for individual packages."

Clean any leftovers using the following commands:

Again, to learn why we are running these commands, read this from the man page:

clean: clean clears out the local repository of retrieved package files. It removes
everything but the lock file from /var/cache/apt/archives/ and

Unpacking nginx (1.21.3-1~buster) over (1.21.2-1~buster) ...
Setting up nginx (1.21.3-1~buster) ...
Processing triggers for systemd (241-7~deb10u8) ...

As you can see I had a pending upgrade of Nginx from 1.21.2 to 1.21.3. In production,
always check before upgrading individual packages in case there is a major change that
might break your system.

$ sudo apt dist-upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

$ sudo apt autoremove
Reading package lists... Done
Building dependency tree
Reading state information... Done
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

$ sudo apt autoclean
Reading package lists... Done
Building dependency tree
Reading state information... Done

https://manpages.ubuntu.com/manpages/impish/en/man8/apt-get.8.html

/var/cache/apt/archives/partial/. When APT is used as a dselect(1) method, clean is run
automatically. Those who do not use dselect will likely want to run apt-get clean from time
to time to free up disk space.
autoclean: Like clean, autoclean clears out the local repository of retrieved package files.
The difference is that it only removes package files that can no longer be downloaded,
and are largely useless. This allows a cache to be maintained over a long period without it
growing out of control. The configuration option APT::Clean-Installed will prevent installed
packages from being erased if it is set to off.
autoremove: is used to remove packages that were automatically installed to satisfy
dependencies for some package and that are no longer needed.

Edit & Update software repos
Before making any changes to the /etc/apt/sources.list file, back it up in a different directory. Do
the same for anything in the /etc/apt/sources.list.d folder. This will copy the file to your home
directory under the name sources.list.bak

Use your favorite editor or sed to replace all "buster" references with "bullseye", without quotes
of course.

The problem is, the sources.list can be set up differently based on your needs. For example, this is
the sources.list on my VPS now.

Meanwhile the full sources.list (with official Debian repos only) can look like this:

$ cp /etc/apt/sources.list ~/sources.list.bak

Generated by distrobuilder
deb http://deb.debian.org/debian buster main
deb http://security.debian.org/debian-security buster/updates main
deb http://deb.debian.org/debian buster-backports main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ buster nginx

deb http://deb.debian.org/debian buster main contrib non-free
deb-src http://deb.debian.org/debian buster main contrib non-free

deb http://deb.debian.org/debian buster-updates main contrib non-free
deb-src http://deb.debian.org/debian buster-updates main contrib non-free

deb http://deb.debian.org/debian buster-backports main contrib non-free
deb-src http://deb.debian.org/debian buster-backports main contrib non-free

https://linux.die.net/man/1/sed

Let me explain what each of these mean. Feel free to skip this part or read it from the official
source and continue the migration process.

deb or deb-src indicate the type of archive. deb consists of binary (=already compiled)
packages, while deb-src contains the source code and other necessary files for building
applications from source. Unless you plan to build official packages from source on the
system, you can completely leave out the deb-src lines.
http://deb.debian.org/debian and http://security.debian.org/debian-security/ are
URLs that point to mirrors which contain the actual packages. There are hundreds of
mirrors and it is generaly recommended to use the closest one to you with the smallest
latency (you can find the list here). The two mentioned above are actually just pointers to
CDN network which should redirect you to the fastest official mirror (as explained here).
buster – this part refers to the codename of the distribution (e.g. buster, bullseye, etc.)
The first refers to the base Debian repository, while the others to the updates, backports
and security respectively. The backports repository is used in cases you want a stable
system (use the stable branch), and have newer versions of software available through
the official repository. However, you must be careful and don't mess with fundamental
libraries and other core packages, which could result in a broken system due to
mismatched versions of important packages.
main, contrib and non-free – these are called components and specify which kinds of
packages you would like to have access to. Some users won't need non-free packages,
because they support the idea of libre software, while others might need them to install
additional firmware to make their devices work properly.

Finally change the sources.list file accordingly. I won't be building from source and I don't need any
packages outside of main. I will be adding new line with debian updates, which wasn't there for
some reason before.

deb http://security.debian.org/debian-security/ buster/updates main contrib non-free
deb-src http://security.debian.org/debian-security/ buster/updates main contrib non-free

Generated by distrobuilder
deb http://deb.debian.org/debian bullseye main

deb http://security.debian.org/debian-security bullseye-security main

deb http://deb.debian.org/debian bullseye-updates main

deb http://deb.debian.org/debian bullseye-backports main

Official Nginx repo

https://wiki.debian.org/SourcesList
https://wiki.debian.org/SourcesList
http://deb.debian.org/debian
http://security.debian.org/debian-security/
https://www.debian.org/mirror/list
https://deb.debian.org/

Now run apt to make it aware of configuration changes

Upgrade the packages and distro

Upgrade existing packages only

As you can see, a lot of packages will be upgraded. In order to avoid major breaks, we need to run
apt upgrade --without-new-pkgs. This will only upgrade existing packages, but won't remove or
add any new. The reason we are doing this is to prevent the system from breaking down due to
missing packages after the upgrade.

You may see the following line somewhere in the output:

deb https://nginx.org/packages/mainline/debian/ bullseye nginx

Be careful, syntax of the security repository was changed from the previous
release. Instead of buster/updates, it is now bullseye-security.

$ sudo apt update
Get:1 http://security.debian.org/debian-security bullseye-security InRelease [44.1 kB]
Get:2 http://deb.debian.org/debian bullseye InRelease [113 kB]
Get:3 http://deb.debian.org/debian bullseye-updates InRelease [36.8 kB]
Get:4 http://deb.debian.org/debian bullseye-backports InRelease [39.3 kB]
Get:5 http://security.debian.org/debian-security bullseye-security/main amd64 Packages [29.6 kB]
Get:6 http://security.debian.org/debian-security bullseye-security/main Translation-en [16.0 kB]
Get:7 http://deb.debian.org/debian bullseye/main amd64 Packages [8,178 kB]
Get:8 http://deb.debian.org/debian bullseye/main Translation-en [6,241 kB]
Get:9 http://deb.debian.org/debian bullseye-backports/main amd64 Packages [56.8 kB]
Get:10 http://deb.debian.org/debian bullseye-backports/main Translation-en [42.9 kB]
Get:11 https://nginx.org/packages/mainline/debian bullseye InRelease [2,860 B]
Get:12 https://nginx.org/packages/mainline/debian bullseye/nginx amd64 Packages [7,716 B]
Fetched 14.8 MB in 10s (1,415 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done
384 packages can be upgraded. Run 'apt list --upgradable' to see them.

384 packages can be upgraded. Run 'apt list --upgradable' to see them.

$ sudo apt upgrade --without-new-pkgs

This is the result of --without-new-pkgs. The reason for these kept back packages is the following:

"If the dependencies have changed on one of the packages you have installed so that a new
package must be installed to perform the upgrade then that will be listed as "kept-back"."

It is not strictly necessary to reboot now, but I just want to make sure nothing broke during this
process and the system can safely boot.

Perform full upgrade – remove old, install new
Fortunately, in my case the system booted successfully. Now it's time to perform a full upgrade.
This command can actually cause issue, since it does install new packages and removes old ones.
Again, watch the screen carefully.

This is an example question you might get. I have previously edited the sysctl.conf file to fix some
performance issues with the service I was running. I pressed D to get the list of changes and after
concluding that I want to keep my file, I pressed N.

The following packages have been kept back:

Carefully watch the upgrade process! In case a service needs to be restarted or the
system doesn't know what to do with new configuration files (e.g. you have custom
config file and the upgrade brings a new one, should it overwrite, keep original or let you
compare and merge manually?) You might be asked these kinds of questions.

$ sudo apt full-upgrade
...
...
...
149 upgraded, 90 newly installed, 19 to remove and 0 not upgraded.
Need to get 276 MB of archives.
After this operation, 625 MB of additional disk space will be used.
Do you want to continue? [Y/n]

Configuration file '/etc/sysctl.conf'
 ==> Modified (by you or by a script) since installation.
 ==> Package distributor has shipped an updated version.
 What would you like to do about it ? Your options are:
 Y or I : install the package maintainer's version
 N or O : keep your currently-installed version
 D : show the differences between the versions
 Z : start a shell to examine the situation

or sshd_config changes

Now reboot and pray :)

Well, since I was using a 5.4 kernel from Debian 10 backports, instead of the default 4.19, I had to
explicitly confirm something during the boot process. Unfortunately, my VPS provider doesn't
provide me with access to the pre-boot environment and GRUB, therefore I wasn't able to boot.
Took them about a day to get the VPS up and running and even though I am now running Debian
11 which comes with 5.10, I still have the 5.4. Unless you have also installed backported kernel,
you should be already running Debian 11 with 5.10 without any troubles.

If we run sudo apt upgrade again, we can see a number of unused packages that can be remove.

 The default action is to keep your current version.
*** sysctl.conf (Y/I/N/O/D/Z) [default=N] ?

$ sudo reboot

$ cat /etc/debian_version
11.0

The following packages were automatically installed and are no longer required:
 cpp-8 dh-python gir1.2-glib-2.0 golang-1.11 golang-1.11-doc golang-1.11-go golang-1.11-src libasan5 libdns-
export1104
 libfl2 libgirepository-1.0-1 libicu63 libidn11 libip4tc0 libip6tc0 libiptc0 libisc-export1100 libisl19 libjson-c3
 liblua5.2-0 libmatheval1 libmpdec2 libmpx2 libnftables0 libperl5.28 libpgm-5.2-0 libprocps7 libpython2-stdlib
 libpython2.7-minimal libpython2.7-stdlib libpython3.7 libpython3.7-dev libpython3.7-minimal libpython3.7-
stdlib
 libreadline7 perl-modules-5.28 python2 python2-minimal python2.7 python2.7-minimal python3-asn1crypto
python3-dbus

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/Ihe902X1wOEzFdGZ-image-1631138059400.png

In order to do so, run

or use the purge option to remove configuration files of these packages as well

 python3-entrypoints python3-future python3-gi python3-jeepney python3-keyring python3-keyrings.alt
python3-mock
 python3-pbr python3-pycryptodome python3-secretstorage python3-xdg python3.7-minimal
Use 'sudo apt autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

$ sudo apt autoremove

$ sudo apt --purge autoremove

That's it. Now make sure that everything works as expected, especially the services and
apps you are running. Again, in my case, both of the applications that I am running are
unable to start, guess that will take some more troubleshooting :) That's why you never try
this on production without prior testing.

Updates & Upgrades

Upgrading Debian kernel
(5.4 to 5.10)
I have recently upgraded one of my Debian servers from 10 to 11. The main issue I ran into was
the fact that the kernel was backported. This meant that when running Debian 10, the kernel was
newer than original (5.4 vs 4.19), but now that I have upgraded to Debian 11, which ships with 5.10
by default, I am now running older version than default. This is nothing to worry about, since the
5.4 is the 20th LTS (Long-Term-Support) release, meaning it will be supported up until December
2025. The sole reason why am I even doing this is to have the default and newest Debian kernel
and avoid having a FrankenDebian.

Check current version
First, check the current version of your kernel.

Update and upgrade
It is always recommended to update apt repositories and upgrade any pending packages.

Search apt
Issue a search query to apt to see which kernel versions are available in the default repository.

$ uname -r

5.4.0-74-generic

$ sudo apt update
$ sudo apt upgrade

$ apt-cache search linux-image | grep amd64

linux-headers-5.10.0-8-amd64 - Header files for Linux 5.10.0-8-amd64
linux-headers-5.10.0-8-cloud-amd64 - Header files for Linux 5.10.0-8-cloud-amd64
linux-headers-5.10.0-8-rt-amd64 - Header files for Linux 5.10.0-8-rt-amd64
linux-image-5.10.0-8-amd64-dbg - Debug symbols for linux-image-5.10.0-8-amd64

https://web.archive.org/web/20210903052449/https://wiki.debian.org/DontBreakDebian

Pick the right image and headers for you. In my case it is the linux-image-5.10.0-8-amd64 and linux-
headers-5.10.0-8-amd64

Install new kernel packages

In my case the system wanted/needed to install some additional packages as well, don't worry
about that too much right now, we can check what was installed later and possibly uninstall if we
want to.

The last lines of the installation should look like this:

linux-image-5.10.0-8-amd64-unsigned - Linux 5.10 for 64-bit PCs
linux-image-5.10.0-8-cloud-amd64-dbg - Debug symbols for linux-image-5.10.0-8-cloud-amd64
linux-image-5.10.0-8-cloud-amd64-unsigned - Linux 5.10 for x86-64 cloud
linux-image-5.10.0-8-rt-amd64-dbg - Debug symbols for linux-image-5.10.0-8-rt-amd64
linux-image-5.10.0-8-rt-amd64-unsigned - Linux 5.10 for 64-bit PCs, PREEMPT_RT
linux-image-amd64-dbg - Debugging symbols for Linux amd64 configuration (meta-package)
linux-image-amd64-signed-template - Template for signed linux-image packages for amd64
linux-image-cloud-amd64-dbg - Debugging symbols for Linux cloud-amd64 configuration (meta-package)
linux-image-rt-amd64-dbg - Debugging symbols for Linux rt-amd64 configuration (meta-package)
linux-image-5.10.0-8-amd64 - Linux 5.10 for 64-bit PCs (signed)
linux-image-5.10.0-8-cloud-amd64 - Linux 5.10 for x86-64 cloud (signed)
linux-image-5.10.0-8-rt-amd64 - Linux 5.10 for 64-bit PCs, PREEMPT_RT (signed)
linux-image-amd64 - Linux for 64-bit PCs (meta-package)
linux-image-cloud-amd64 - Linux for x86-64 cloud (meta-package)
linux-image-rt-amd64 - Linux for 64-bit PCs (meta-package)

$ sudo apt install linux-image-5.10.0-8-amd64 linux-headers-5.10.0-8-amd64

Setting up linux-headers-5.10.0-8-amd64 (5.10.46-4) ...
Setting up initramfs-tools-core (0.140) ...
Setting up initramfs-tools (0.140) ...
update-initramfs: deferring update (trigger activated)
Setting up linux-image-5.10.0-8-amd64 (5.10.46-4) ...
I: /vmlinuz.old is now a symlink to boot/vmlinuz-5.10.0-8-amd64
I: /initrd.img.old is now a symlink to boot/initrd.img-5.10.0-8-amd64
I: /vmlinuz is now a symlink to boot/vmlinuz-5.10.0-8-amd64
I: /initrd.img is now a symlink to boot/initrd.img-5.10.0-8-amd64
/etc/kernel/postinst.d/initramfs-tools:
update-initramfs: Generating /boot/initrd.img-5.10.0-8-amd64
Processing triggers for initramfs-tools (0.140) ...

Reboot to apply changes
Such a big change as upgrading the kernel requires the system to be rebooted. Until then, the
system will use the old kernel. Even in case the new kernel doesn't boot, you can still use the old
one, because the new was just installed alongside with the old.

update-initramfs: Generating /boot/initrd.img-5.10.0-8-amd64

$ sudo reboot

It is recommended to have access to the booloader (recovery) in case something goes
wrong. Procceed with caution if you have SSH access only.

You system should now reboot with the newest kernel. In my case, the VPS booted back to
the old kernel, probably because the provider has hard set it to boot only that specific
kernel. Consult your provider in case you have a VPS.

Updates & Upgrades

Upgrade Debian 10 to 11
(speedrun)

Update and upgrade existing
First update repos and upgrade any pending packages:

I had one pending Nginx update, so I will install it (I have done the same on another server already,
so I know the version is safe and doesn't break anything.) After the upgrade, Nginx has been
restarted automatically. You can check the current version with sudo nginx -v

Edit sources.list
Go to /etc/apt and edit sources.list (with elevated privileges).

Remove deb-src
I removed lines with deb-src , because I simply don't need them.

Change server location
Decided I wanted to change to a closer Debian mirror, so I replaced the old servers.

Update from new repos

Autoremove some packages

This is not supposed to be a quide, just a semi-public documentation of an update I
performed on one of my servers.

$ sudo apt update
$ sudo apt upgrade

$ sudo apt update

$ sudo apt autoremove

Add bullseye to sources.list
Replace all occurances of buster in /etc/apt/sources.list with bullseye . Don't forget new syntax on
debian-security line, which is now bullseye-security

Add Nginx
On this server, I have Nginx repo in /etc/apt/sources.list.d in nginx.list file. Again, replace buster with
bullseye .

Update and upgrade fully

This server had a default Debian 10 kernel, so the upgrade went smoothly. Unfortunately, it usually
isn't the system itself that breaks during the upgrade, but the services running on it. This time, it
was PHP. For whatever reason, the following happened:

PHP-FPM7.3 service got masked by systemd.
PHP commands in the command line stopped working.
Even though Debian 11's PHP version is 7.4, I still only had PHP 7.3 installed, but not
working.

$ sudo apt update

$ sudo apt upgrade --without-new-pkgs

$ sudo reboot

$ sudo apt full-upgrade

$ sudo apt autoremove

Fixed by installing PHP 7.4 from scratch and reinstalling the application depending on it.

Apt

Apt

Enable backports in Debian
11
Sometimes the packages in Debian stable are way too old. In that case, you can use the
backported repository to install packages in newer versions. It is not recommended to install every
single package from the backported repo to keep your distro stable in the long term.

Enable backports in Debian
Open /etc/apt/sources.list in your favorite editor.

Add a line containing the following:

Update apt configuration

Check apt pritority configuration and make sure the backports repo has lower priority than the
other repositories.

Instead only pick packages you need. Use the -t option with apt to force installation from the
backported repo.

$ sudo vi /etc/apt/sources.list

deb http://deb.debian.org/debian bullseye-backports main

$ sudo apt update

$ apt-cache policy

Package files:
 100 /var/lib/dpkg/status
 release a=now
 500 https://nginx.org/packages/mainline/debian bullseye/nginx amd64 Packages
 release v=11.0,o=nginx,a=stable,n=bullseye,l=nginx,c=nginx,b=amd64
 origin nginx.org

 100 http://deb.debian.org/debian bullseye-backports/main amd64 Packages
 release o=Debian Backports,a=bullseye-backports,n=bullseye-backports,l=Debian
Backports,c=main,b=amd64
 origin deb.debian.org
 500 http://security.debian.org/debian-security bullseye-security/main amd64 Packages
 release v=11,o=Debian,a=stable-security,n=bullseye-security,l=Debian-Security,c=main,b=amd64
 origin security.debian.org
 500 http://deb.debian.org/debian bullseye/main amd64 Packages
 release v=11.0,o=Debian,a=stable,n=bullseye,l=Debian,c=main,b=amd64
 origin deb.debian.org
Pinned packages:

As you can see, the backported repo has lower number than the rest. It is a bit more
complicated than that (you can check apt's man page), but for the purposes of this, let's just
say that lower means lower priority.

Apt

Enable testing repo in stable
Debian 11
You want to keep a stable Debian 11 distro (install and upgrade all packages from stable by
default), but there's a few packages you want to use that are in another repo (testing or unstable).
Here's how to do it (probably correctly).

Enable testing in Debian
Adding backports is easy, it's just another line in /etc/apt/sources.list. Unfortunately, it is not as
simple as that with testing or unstable. For these to work properly (and not change all packages to
unstable), we need to play a bit with repository priorities.

We will use something called Apt-Pinning, which you can read more about in the Debian Handbook.

Edit apt preferences file
Create apt preferences file (if it doesn't exist already) and open it with your favorite file editor.

Now add the following content into it:

This should give the stable repository high enough priority that all packages will be installed and
upgraded from stable by default. To install package from other repo (testing or unstable), it has to
be explicitly specified with -t option of apt.

Replace bullseye with stable in sources.list

$ sudo vi /etc/apt/preferences

Package: *
Pin: release a=stable
Pin-Priority: 900

Package: *
Pin: release o=Debian
Pin-Priority: -10

https://debian-handbook.info/browse/stable/sect.apt-get.html#sect.apt.priorities

This is how my sources.list in /etc/apt looks like now:

We can see that each line contains a reference to the release codename bullseye.

Replace all references to bullseye with stable (except for Nginx) like this:

Update your system

Generated by distrobuilder
deb http://deb.debian.org/debian bullseye main

deb http://security.debian.org/debian-security bullseye-security main

deb http://deb.debian.org/debian bullseye-updates main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ bullseye nginx

$ sudo vi /etc/apt/sources.list

Generated by distrobuilder
deb http://deb.debian.org/debian stable main

deb http://security.debian.org/debian-security stable-security main

deb http://deb.debian.org/debian stable-updates main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ bullseye nginx

WARNING – It is not recommended to use stable in the sources.list. Stable always refers to
the stable repository of the current Debian version. Once the next Debian version is
released in a few years and you upgrade your system, it will break stuff, because
everything will suddenly update to the newest version. Keep that in mind.

Avoid using stable in your sources.list as that results in nasty surprises and broken systems
when the next release is made; upgrading to a new release should be a deliberate, careful
action and editing a file once every two years is not a burden.

https://wiki.debian.org/DebianStable

Add testing lines to sources.list

Copy the 3 lines with stable in them like this:

and add testing to each of the other lines, like this:

$ sudo apt update

Get:1 http://security.debian.org/debian-security stable-security InRelease [44.1 kB]
Get:2 http://deb.debian.org/debian stable InRelease [113 kB]
Get:3 http://deb.debian.org/debian stable-updates InRelease [36.8 kB]
Get:4 http://security.debian.org/debian-security stable-security/main amd64 Packages [31.1 kB]
Get:5 http://security.debian.org/debian-security stable-security/main Translation-en [16.8 kB]
Get:6 http://deb.debian.org/debian stable/main amd64 Packages [8,178 kB]
Get:7 http://deb.debian.org/debian stable/main Translation-en [6,241 kB]
Hit:8 https://nginx.org/packages/mainline/debian bullseye InRelease
Fetched 14.7 MB in 7s (2,254 kB/s)
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
All packages are up to date.

$ sudo vi /etc/apt/sources.list

Generated by distrobuilder
deb http://deb.debian.org/debian stable main
deb http://deb.debian.org/debian stable main

deb http://security.debian.org/debian-security stable-security main
deb http://security.debian.org/debian-security stable-security main

deb http://deb.debian.org/debian stable-updates main
deb http://deb.debian.org/debian stable-updates main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ bullseye nginx

Generated by distrobuilder
deb http://deb.debian.org/debian stable main
deb http://deb.debian.org/debian testing main

Update your system again

Confirm the testing repo is working
Query search for a package that has different versions across stable and testing, e.g wireguard

You can see that there are now 2 packages available, each at different version.

deb http://security.debian.org/debian-security stable-security main
deb http://security.debian.org/debian-security testing-security main

deb http://deb.debian.org/debian stable-updates main
deb http://deb.debian.org/debian testing-updates main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ bullseye nginx

$ sudo apt update

$ apt-cache show wireguard

Package: wireguard
Version: 1.0.20210424-1
Installed-Size: 17
Maintainer: Daniel Kahn Gillmor <dkg@fifthhorseman.net>
Architecture: all
Depends: wireguard-modules (>= 0.0.20191219) | wireguard-dkms (>= 0.0.20200121-2), wireguard-tools (>=
1.0.20210424-1)
Description-en: fast, modern, secure kernel VPN tunnel (metapackage)
 WireGuard is a novel VPN that runs inside the Linux Kernel and uses
 state-of-the-art cryptography (the "Noise" protocol). It aims to be
 faster, simpler, leaner, and more useful than IPSec, while avoiding
 the massive headache. It intends to be considerably more performant
 than OpenVPN. WireGuard is designed as a general purpose VPN for
 running on embedded interfaces and super computers alike, fit for
 many different circumstances. It runs over UDP.
 .
 This metapackage explicitly depends on both the kernel module and the
 userspace tooling.
Description-md5: bd6dd7a30cf34800a40219e3d2df9dc3

Confirm the correct apt priorities
We should also check if apt pulls the correct (stable) package by default and only installs from
testing when explicitly requested. Run apt with --dry-run to show what would be installed without
installing anything.

Homepage: https://www.wireguard.com
Section: net
Priority: optional
Filename: pool/main/w/wireguard/wireguard_1.0.20210424-1_all.deb
Size: 8196
MD5sum: fcf9917e3a6cc6c2588d4d0310d631be
SHA256: 4b19f03e77c3ab82e9510ef9b7abe1b35c39d509ba0a792328fd3b6f6e060adc

Package: wireguard
Version: 1.0.20210223-1
Installed-Size: 17
Maintainer: Daniel Kahn Gillmor <dkg@fifthhorseman.net>
Architecture: all
Depends: wireguard-modules (>= 0.0.20191219) | wireguard-dkms (>= 0.0.20200121-2), wireguard-tools (>=
1.0.20210223-1)
Description-en: fast, modern, secure kernel VPN tunnel (metapackage)
 WireGuard is a novel VPN that runs inside the Linux Kernel and uses
 state-of-the-art cryptography (the "Noise" protocol). It aims to be
 faster, simpler, leaner, and more useful than IPSec, while avoiding
 the massive headache. It intends to be considerably more performant
 than OpenVPN. WireGuard is designed as a general purpose VPN for
 running on embedded interfaces and super computers alike, fit for
 many different circumstances. It runs over UDP.
 .
 This metapackage explicitly depends on both the kernel module and the
 userspace tooling.
Description-md5: bd6dd7a30cf34800a40219e3d2df9dc3
Homepage: https://www.wireguard.com
Section: net
Priority: optional
Filename: pool/main/w/wireguard/wireguard_1.0.20210223-1_all.deb
Size: 8164
MD5sum: fa92e03f62c6d6528cc770a9e97a141a
SHA256: d07b7f466a90a232f7a8a1750bbf7e5872555d41854789fc0eb6b4f0538b6ebf

Try installing package from testing
Now install the same package from testing, by specifying the -t option and the name of the testing
repository.

$ sudo apt install wireguard --dry-run

Comparing the output from apt-cache show wireguard to this confirms that apt is trying to
install the stable version (20210223-1)

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
 wireguard-tools
Suggested packages:
 openresolv | resolvconf
The following NEW packages will be installed:
 wireguard wireguard-tools
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Inst wireguard-tools (1.0.20210223-1 Debian:11.0/stable [amd64])
Inst wireguard (1.0.20210223-1 Debian:11.0/stable [all])
Conf wireguard-tools (1.0.20210223-1 Debian:11.0/stable [amd64])
Conf wireguard (1.0.20210223-1 Debian:11.0/stable [all])

sudo apt install -t testing wireguard --dry-run

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
 wireguard-tools
Suggested packages:
 openresolv | resolvconf
The following NEW packages will be installed:
 wireguard wireguard-tools
0 upgraded, 2 newly installed, 0 to remove and 163 not upgraded.
Inst wireguard-tools (1.0.20210424-1 Debian:testing [amd64])
Inst wireguard (1.0.20210424-1 Debian:testing [all])
Conf wireguard-tools (1.0.20210424-1 Debian:testing [amd64])

Conf wireguard (1.0.20210424-1 Debian:testing [all])

This would install version 20210424-1 from testing.

Nginx
Collection of Nginx-related posts on my Debian server, might create a separate Book for Nginx in
the future.

Nginx

Missing /etc/nginx folder
Not entirely sure how this might have happened, but I once SSHed into one of my servers to find
out that the entire /etc/nginx folder has dissapeared. I tried looking elsewhere or using locate, but
the configuration folder was nowhere to be found. Just like that the /var/log/nginx folder has
dissapeared as well. It might have happened during an upgrade, but after some thorough
searching, I still couldn't figure out when or why it happened.

Strangely, all services (websites) using Nginx were running fine and the entire service was active
and running as well, still happily pointing to the non-existent config file:

However, if the server or Nginx randomly restarted, it wouldn't be able to start again and all hell
would break loose.

Fortunately, I have backed up my config file, which is really the only thing that matters, the rest
can be rebuilt.

Stop Nginx

$ systemctl status nginx
● nginx.service - nginx - high performance web server
 Loaded: loaded (/lib/systemd/system/nginx.service; disabled; vendor preset: enabled)
 Drop-In: /etc/systemd/system/nginx.service.d
 └─override.conf
 Active: active (running) since Wed 2021-09-15 21:40:43 CEST; 3 days ago
 Docs: https://nginx.org/en/docs/
 Main PID: 98 (nginx)
 CPU: 20.643s
 CGroup: /system.slice/nginx.service
 ├─ 98 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.conf
 └─101 nginx: worker process

Sep 15 21:40:43 hostname systemd[1]: Starting nginx - high performance web server...
Sep 15 21:40:43 hostname systemd[1]: Started nginx - high performance web server.

$ cd /etc/nginx
-bash: cd: /etc/nginx: No such file or directory

Try to restart it, and just like I expected:

Uninstall and reinstall Nginx

Fix configuration
Navigate to /etc/nginx/conf.d and rename the config file like before.

$ sudo systemctl stop nginx

$ sudo systemctl restart nginx
Job for nginx.service failed because the control process exited with error code.
See "systemctl status nginx.service" and "journalctl -xe" for details.

$ sudo systemctl status nginx
● nginx.service - nginx - high performance web server
 Loaded: loaded (/lib/systemd/system/nginx.service; disabled; vendor preset: enabled)
 Drop-In: /etc/systemd/system/nginx.service.d
 └─override.conf
 Active: failed (Result: exit-code) since Sun 2021-09-19 16:25:01 CEST; 5s ago
 Docs: https://nginx.org/en/docs/
 Process: 22419 ExecStart=/usr/sbin/nginx -c /etc/nginx/nginx.conf (code=exited, status=1/FAILURE)
 CPU: 11ms

Sep 19 16:25:01 hostname systemd[1]: Starting nginx - high performance web server...
Sep 19 16:25:01 hostname nginx[22419]: nginx: [alert] could not open error log file: open()
"/var/log/nginx/error.log" fa>
Sep 19 16:25:01 hostname nginx[22419]: 2021/09/19 16:25:01 [emerg] 22419#22419: open()
"/etc/nginx/nginx.conf" failed (2:>
Sep 19 16:25:01 hostname systemd[1]: nginx.service: Control process exited, code=exited, status=1/FAILURE
Sep 19 16:25:01 hostname systemd[1]: nginx.service: Failed with result 'exit-code'.
Sep 19 16:25:01 hostname systemd[1]: Failed to start nginx - high performance web server.

$ sudo apt purge nginx*

$ sudo apt install nginx

$ cd /etc/nginx/conf.d
$ sudo mv default.conf proxy.conf

I'm copying the config through SSH session, so just $ sudo vi proxy.conf and Shift+Ins and Esc and
ZZ to save and quit.

Test config, final fixes
Test the configuration:

Together with the config folder, my dhparam.pem file was also deleted, so we have to generate it
again.

Generate secure dhparam.pem . This will take a loooooong time, especially on VPSes with a single
core like in my case.

Test config again, it should be fine now:

Restart the service and check status to see if everything is working.

$ sudo nginx -t

nginx: [emerg] BIO_new_file("/etc/nginx/dhparam.pem") failed (SSL: error:02001002:system library:fopen:No
such file or directory:fopen('/etc/nginx/dhparam.pem','r') error:2006D080:BIO routines:BIO_new_file:no such file)
nginx: configuration file /etc/nginx/nginx.conf test failed

$ openssl dhparam -out dhparam.pem 4096

$ sudo nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

$ sudo systemctl restart nginx

Moral of the story – always backup at least your config files

Nginx

Hide Nginx version
Test if your website sends Server header
When you make a request to a Nginx-powered website, by default, every response will contain
Nginx's server version in a Server header. You can test this by opening developer options in your
browser (F12 in Firefox) and looking at the requests in the Network tab.

Other method is to use curl :

The output shows a similar result:

Hide Nginx version from Server header
Even though exposing the server's Nginx version isn't a huge security threat, it makes it easier for
attackers to find exploits and vulnerabilities specifically for the given version. This is especially
important if you forget updating your server for a while.

Edit Nginx configuration
Open the Nginx configuration file in /etc/nginx/nginx.conf :

$ curl -IL https://selfhostedfuture.xyz

HTTP/1.1 200 OK
Server: nginx/1.21.3
Content-Type: text/html; charset=UTF-8
...

Hiding Nginx's version is Security Through Obscurity, since more advanced attackers are
able to find what they want anyway

$ sudo vi /etc/nginx/nginx.conf

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/mtF3rQS3Fm0UeP8K-image-1632951842100.png
https://web.archive.org/web/20210411035851/https://www.techopedia.com/definition/21985/security-through-obscurity-sto

By default, your config will look something like this (settings here can be overwritten by
configuration in /etc/nginx/conf.d):

Focus on the http server block and add the server_tokens directive and set it to off :

Like this:

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log notice;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;

 sendfile on;
 #tcp_nopush on;

 keepalive_timeout 65;

 #gzip on;

 include /etc/nginx/conf.d/*.conf;
}

server_tokens off;

Test configuration
Before restarting, check that you haven't made a mistake in the configuration:

Proceed if the output looks like this:

Restart Nginx
Restart Nginx for the changes to take effect:

Confirm the change
Look into the Network tab again, or use curl to see whether Nginx still reports the version. It is also
possible to completely hide the fact that the website is Nginx powered, but that is for another post.

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 server_tokens off;

$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

$ sudo systemctl restart nginx

$ curl -IL https://selfhostedfuture.xyz

HTTP/1.1 200 OK
Server: nginx
Content-Type: text/html; charset=UTF-8

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/swD4gfKYCIBr0M9C-image-1632953695800.png

Nginx

Generate DH parameters
(dhparam.pem)
One of the things we can do to improve the security of our website is to generate our own DH
parameters. What these parameters mean is decently explained HERE.

Genreate dhparam.pem

If you are generating directly into the /etc/nginx directory (only writable by root), you can use sudo ,
or if you don't want to elevate openssl for no reason, just generate the file to a writable location
and copy it to /etc/nginx later on.

Add it to Nginx config
Open Nginx configuration file and add the path to dhparam.pem file under the server block.

Test the configuration to avoid mistakes (like forgetting ;) etc.

Restart Nginx to apply the change:

$ openssl dhparam -out dhparam.pem 4096

$ sudo openssl dhparam -out dhparam.pem 4096

Heads up – This will take a long time, especially on less powerful servers/VMs.

$ sudo vi /etc/nginx/conf.d/your_config_file.conf

...
ssl_dhparam /etc/nginx/dhparam.pem;
...

$ sudo nginx -t

$ sudo systemctl restart nginx

https://web.archive.org/web/20210306120048/https://security.stackexchange.com/questions/94390/whats-the-purpose-of-dh-parameters

Tips and tools

Tips and tools

Edit /etc/passwd correctly
In my recent guides, you might have noticed that I sometimes edit /etc/passwd directly with vi or
nano . This is not advised behavior. The main reason being the possibility of file corruption and
other users making changes to their account while you are editing. The latter is not very likely to
happen as I am the only user on the system. In any case, here's how to do it more properly.

Use vipw
vipw is a command line utility designed to make edits to the /etc/passwd file and prevents
corruption by setting appropriate locks. You will need elevated privileges to edit /etc/passwd .

It might ask you to pick an editor you want to use, usually nano or vi . Choose which one you
prefer and the file will open, ready to be edited. I usually do this to edit shell for a service user, but
do whatever you like.

$ sudo vipw

Tips and tools

Create multiple parent
directories with mkdir
You have a directory /home/mydir and you want to create two new directories like this:
/home/mydir/backup/something

When you run mkdir /home/mydir/backup/something you will get an error:

Normally, you would have to make both directories separately like mkdir /home/mydir/backup
/home/mydir/backup/something

Add the -p flag (make parent directories along the way if needed) to fix it:

mkdir: cannot create directory ‘/home/mydir/backup/something’: No such file or directory

mkdir -p /home/mydir/backup/something

mkdir created both backup and something directory in the same path

Tips and tools

Make a Linux VM template
unique
If you have ever worked with Virtual Machines (VMs), you are most likely familiar with the term "VM
cloning" or VM templates in general. It's a process of taking an existing VM with the operating
system installed and cloning it to create a new identical VM. This comes in handy when you are
tasked with creating multiple VMs for the same purpose or you want to achieve consistency across
your environment (same OS settings, FS layout etc.). All of this is possible without having to install
X number of VMs manually - you can just do it once and then clone the VM in a few clicks.

The problem with this time saving feature is that each VM is really identical. This may not seem
like a problem at a first glance - we wanted to make the VMs identical, right? Well, that's true, but
there's certain things that should not be kept the same. One of them is e.g SSH host keys - without
any further modification, you would have the same SSH host keys on all of your systems, which is
certainly not a good thing for security.

There's a couple of ways we can solve this - most commonly through Guest OS Customization
features of different hypervisors or with automation (cloud-init, ansible...). Most of the automation
stuff requires quite a bit of preparation and takes time. Guest OS customization is a great option, if
it's available, but doesn't solve everything either. Today, I'm going to show you a couple of things
that you should definitely do on each cloned system to make it "unique". The list may not include
everything ever, but has worked for me for quite some time.

Change hostname
Use the hostnamectl to change the hostname. The command may not return the new hostname
until reboot.

This example is based on Debian 12. The configuration may be different on other systems

sudo hostnamectl set-hostname new_hostname.domain

hostnamectl
 Static hostname: new_hostname.domain
 Icon name: computer-vm
 Chassis: vm ��

Fix /etc/hosts
Sometimes people forget that the hostname also lives in the hosts file and won't change on its
own.

Edit IP
You don't want to cause an IP collision on your network, so don't forget to give each system a
different IP and apply correct settings in the OS.

 Machine ID: XXXXXXXXXXXXXXXXXXXXXXXXXX
 Boot ID: XXXXXXXXXXXXXXXXXXXXXXXXXX
 Virtualization: kvm
Operating System: Debian GNU/Linux 12 (bookworm)
 Kernel: Linux 6.1.0-22-amd64
 Architecture: x86-64
 Hardware Vendor: QEMU
 Hardware Model: Standard PC _i440FX + PIIX, 1996_
Firmware Version: rel-1.16.2-0-prebuilt.qemu.org

vim /etc/hosts
127.0.0.1 localhost
192.168.0.20 new_hostname.domain new_hostname

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

sudo vim /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug ens18

Change ID
This is the "Machine ID" you saw when running the hostnamectl command. You only want to
change the Machine ID, but not the Boot ID - that is usually assigned from the virtualization side
and is already unique (happens during cloning)

Change SSH keys
I found that the easiest way to do this is actually just reinstalling the whole SSH deamon using
purge (deletes all config). Or you can just not include SSH in the template and install it on each
system later.

iface ens18 inet static
 address 192.168.0.20/24
 gateway 192.168.0.1
 # dns-* options are implemented by the resolvconf package, if installed
 dns-nameservers 8.8.8.8
 dns-search domain

sudo rm /etc/machine-id
sudo rm /var/lib/dbus/machine-id
sudo dbus-uuidgen --ensure=/etc/machine-id
sudo dbus-uuidgen --ensure

sudo apt purge openssh-server openssh-client
sudo apt install openssh-server openssh-client

Perform a reboot after all the changes above

