
Updates & Upgrades
Upgrading Debian 10 (Buster) to Debian 11 (Bullseye)
Upgrading Debian kernel (5.4 to 5.10)
Upgrade Debian 10 to 11 (speedrun)

Upgrading Debian 10
(Buster) to Debian 11
(Bullseye)
I am a big fan of Debian in the server environment, mainly due to its great record in stability,
security and other important aspects like having a huge number of tutorials and guides available
online. Since the release of Debian 11 (codenamed Bullseye), I've been thinking about upgrading to
the latest version. I will start on one of my VPS servers to test how is everything working. There are
number of tutorials online explaining the exact same thing. Feel free to follow which you find the
best, this is mainly for my documentation.

Summary
1. Backup your system – You never know what can go wrong, be prepared.
2. Edit apt's sources.list – In order to fetch and install packages meant for Debian 11, we

need to change some lines in the /etc/apt/sources.list file.
3. Update software repos – Make apt aware of the changes you've made in sources.list

and upgrade existing packages.
4. Upgrade the system itself – After upgrading packages, you can upgrade the system as

well.

Backup your system
Unless you actually have a testing environment, where loss of files won't cause even a minimal
headache, please backup your data. In most cases, it is OK to at least backup all configuration files

Before you begin the upgrade process, make sure you know/have these two things:

Standard Debian installation with the default kernel – in this case it is probably fine to
update with SSH access only.

However, if you are using a different kernel or backports, I recommend you also have
access to the boot process and recovery in case your system doesn't boot after the
upgrade.

for any services running on the server. You can always rebuild the server using them in case
something bad happens. Always have a precise upgrade plan when upgrading production servers,
including plans B and C and D, depenging on the criticality of the service you are running. I am
upgrading a server with two services only I use, so I can afford a very simple "backup" – cat all
config files into terminal and copy them to notepad on my workstation, that's it. You can also setup
something fancier like rsnapshot or restic.

Prepare for the changes

Check system version
There are numerous ways (from basic to more fancy) to check what version and distribution you
are running, try running couple of these:

If you don't have that installed like me, try on of the other options. Simply cat /etc/debian_version
or /etc/os-release. The latter will give you more detailed information.

You should also probably know about the uname command, combined with the -a (--all) prints
some system information.

If you run this command on a vanilla Debian 10 distribution, you will most likely see kernel version
4.19, which is the version Debian 10 shipped with. For some reason, my VPS provider is using a
newer kernel and somehow managed to throw Ubuntu into the mix, even though the system

lsb_release -a

$ cat /etc/debian_version
10.10

$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 10 (buster)"
NAME="Debian GNU/Linux"
VERSION_ID="10"
VERSION="10 (buster)"
VERSION_CODENAME=buster
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

$ uname -a
Linux hostname 5.4.0-74-generic #83~18.04.1-Ubuntu SMP Tue May 11 16:01:00 UTC 2021 x86_64 GNU/Linux

https://rsnapshot.org/
https://restic.net/

clearly runs on Debian, based on the multiple command outputs above.

Update and upgrade existing software
It is recommended before installing any new packages or performing a large update such as this
one to update and upgrade the existing system.

First of all, update apt repositories. Unless you are using Nginx from their official repository instead
from the Debian one, you won't see the lines containing nginx.

Upgrade existing packages with apt upgrade.

$ sudo apt update
Get:1 https://nginx.org/packages/mainline/debian buster InRelease [3,607 B]
Hit:2 http://deb.debian.org/debian buster InRelease
Hit:3 http://security.debian.org/debian-security buster/updates InRelease
Hit:4 http://deb.debian.org/debian buster-backports InRelease
Get:5 https://nginx.org/packages/mainline/debian buster/nginx amd64 Packages [49.9 kB]
Fetched 53.5 kB in 1s (47.0 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done

$ sudo apt upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
 nginx
1 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 880 kB of archives.
After this operation, 0 B of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 https://nginx.org/packages/mainline/debian buster/nginx amd64 nginx amd64 1.21.3-1~buster [880 kB]
Fetched 880 kB in 11s (83.5 kB/s)
debconf: delaying package configuration, since apt-utils is not installed
(Reading database ... 42829 files and directories currently installed.)
Preparing to unpack .../nginx_1.21.3-1~buster_amd64.deb ...
Unpacking nginx (1.21.3-1~buster) over (1.21.2-1~buster) ...
Setting up nginx (1.21.3-1~buster) ...

If you want to know the difference between apt upgrade and apt dist-upgrade, read this paragraph
from apt's man page:

"dist-upgrade in addition to performing the function of upgrade, also intelligently handles changing
dependencies with new versions of packages; apt-get has a "smart" conflict resolution system, and
it will attempt to upgrade the most important packages at the expense of less important ones if
necessary. So, dist-upgrade command may remove some packages. The /etc/apt/sources.list file
contains a list of locations from which to retrieve desired package files. See also apt_preferences(5)
for a mechanism for overriding the general settings for individual packages."

Clean any leftovers using the following commands:

Again, to learn why we are running these commands, read this from the man page:

clean: clean clears out the local repository of retrieved package files. It removes
everything but the lock file from /var/cache/apt/archives/ and
/var/cache/apt/archives/partial/. When APT is used as a dselect(1) method, clean is run
automatically. Those who do not use dselect will likely want to run apt-get clean from time

Processing triggers for systemd (241-7~deb10u8) ...

As you can see I had a pending upgrade of Nginx from 1.21.2 to 1.21.3. In production,
always check before upgrading individual packages in case there is a major change that
might break your system.

$ sudo apt dist-upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

$ sudo apt autoremove
Reading package lists... Done
Building dependency tree
Reading state information... Done
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

$ sudo apt autoclean
Reading package lists... Done
Building dependency tree
Reading state information... Done

https://manpages.ubuntu.com/manpages/impish/en/man8/apt-get.8.html

to time to free up disk space.
autoclean: Like clean, autoclean clears out the local repository of retrieved package files.
The difference is that it only removes package files that can no longer be downloaded,
and are largely useless. This allows a cache to be maintained over a long period without it
growing out of control. The configuration option APT::Clean-Installed will prevent installed
packages from being erased if it is set to off.
autoremove: is used to remove packages that were automatically installed to satisfy
dependencies for some package and that are no longer needed.

Edit & Update software repos
Before making any changes to the /etc/apt/sources.list file, back it up in a different directory. Do
the same for anything in the /etc/apt/sources.list.d folder. This will copy the file to your home
directory under the name sources.list.bak

Use your favorite editor or sed to replace all "buster" references with "bullseye", without quotes
of course.

The problem is, the sources.list can be set up differently based on your needs. For example, this is
the sources.list on my VPS now.

Meanwhile the full sources.list (with official Debian repos only) can look like this:

$ cp /etc/apt/sources.list ~/sources.list.bak

Generated by distrobuilder
deb http://deb.debian.org/debian buster main
deb http://security.debian.org/debian-security buster/updates main
deb http://deb.debian.org/debian buster-backports main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ buster nginx

deb http://deb.debian.org/debian buster main contrib non-free
deb-src http://deb.debian.org/debian buster main contrib non-free

deb http://deb.debian.org/debian buster-updates main contrib non-free
deb-src http://deb.debian.org/debian buster-updates main contrib non-free

deb http://deb.debian.org/debian buster-backports main contrib non-free
deb-src http://deb.debian.org/debian buster-backports main contrib non-free

https://linux.die.net/man/1/sed

Let me explain what each of these mean. Feel free to skip this part or read it from the official
source and continue the migration process.

deb or deb-src indicate the type of archive. deb consists of binary (=already compiled)
packages, while deb-src contains the source code and other necessary files for building
applications from source. Unless you plan to build official packages from source on the
system, you can completely leave out the deb-src lines.
http://deb.debian.org/debian and http://security.debian.org/debian-security/ are
URLs that point to mirrors which contain the actual packages. There are hundreds of
mirrors and it is generaly recommended to use the closest one to you with the smallest
latency (you can find the list here). The two mentioned above are actually just pointers to
CDN network which should redirect you to the fastest official mirror (as explained here).
buster – this part refers to the codename of the distribution (e.g. buster, bullseye, etc.)
The first refers to the base Debian repository, while the others to the updates, backports
and security respectively. The backports repository is used in cases you want a stable
system (use the stable branch), and have newer versions of software available through
the official repository. However, you must be careful and don't mess with fundamental
libraries and other core packages, which could result in a broken system due to
mismatched versions of important packages.
main, contrib and non-free – these are called components and specify which kinds of
packages you would like to have access to. Some users won't need non-free packages,
because they support the idea of libre software, while others might need them to install
additional firmware to make their devices work properly.

Finally change the sources.list file accordingly. I won't be building from source and I don't need any
packages outside of main. I will be adding new line with debian updates, which wasn't there for
some reason before.

deb http://security.debian.org/debian-security/ buster/updates main contrib non-free
deb-src http://security.debian.org/debian-security/ buster/updates main contrib non-free

Generated by distrobuilder
deb http://deb.debian.org/debian bullseye main

deb http://security.debian.org/debian-security bullseye-security main

deb http://deb.debian.org/debian bullseye-updates main

deb http://deb.debian.org/debian bullseye-backports main

Official Nginx repo
deb https://nginx.org/packages/mainline/debian/ bullseye nginx

https://wiki.debian.org/SourcesList
https://wiki.debian.org/SourcesList
http://deb.debian.org/debian
http://security.debian.org/debian-security/
https://www.debian.org/mirror/list
https://deb.debian.org/

Now run apt to make it aware of configuration changes

Upgrade the packages and distro

Upgrade existing packages only

As you can see, a lot of packages will be upgraded. In order to avoid major breaks, we need to run
apt upgrade --without-new-pkgs. This will only upgrade existing packages, but won't remove or
add any new. The reason we are doing this is to prevent the system from breaking down due to
missing packages after the upgrade.

You may see the following line somewhere in the output:

Be careful, syntax of the security repository was changed from the previous
release. Instead of buster/updates, it is now bullseye-security.

$ sudo apt update
Get:1 http://security.debian.org/debian-security bullseye-security InRelease [44.1 kB]
Get:2 http://deb.debian.org/debian bullseye InRelease [113 kB]
Get:3 http://deb.debian.org/debian bullseye-updates InRelease [36.8 kB]
Get:4 http://deb.debian.org/debian bullseye-backports InRelease [39.3 kB]
Get:5 http://security.debian.org/debian-security bullseye-security/main amd64 Packages [29.6 kB]
Get:6 http://security.debian.org/debian-security bullseye-security/main Translation-en [16.0 kB]
Get:7 http://deb.debian.org/debian bullseye/main amd64 Packages [8,178 kB]
Get:8 http://deb.debian.org/debian bullseye/main Translation-en [6,241 kB]
Get:9 http://deb.debian.org/debian bullseye-backports/main amd64 Packages [56.8 kB]
Get:10 http://deb.debian.org/debian bullseye-backports/main Translation-en [42.9 kB]
Get:11 https://nginx.org/packages/mainline/debian bullseye InRelease [2,860 B]
Get:12 https://nginx.org/packages/mainline/debian bullseye/nginx amd64 Packages [7,716 B]
Fetched 14.8 MB in 10s (1,415 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done
384 packages can be upgraded. Run 'apt list --upgradable' to see them.

384 packages can be upgraded. Run 'apt list --upgradable' to see them.

$ sudo apt upgrade --without-new-pkgs

The following packages have been kept back:

This is the result of --without-new-pkgs. The reason for these kept back packages is the following:

"If the dependencies have changed on one of the packages you have installed so that a new
package must be installed to perform the upgrade then that will be listed as "kept-back"."

It is not strictly necessary to reboot now, but I just want to make sure nothing broke during this
process and the system can safely boot.

Perform full upgrade – remove old, install new
Fortunately, in my case the system booted successfully. Now it's time to perform a full upgrade.
This command can actually cause issue, since it does install new packages and removes old ones.
Again, watch the screen carefully.

This is an example question you might get. I have previously edited the sysctl.conf file to fix some
performance issues with the service I was running. I pressed D to get the list of changes and after
concluding that I want to keep my file, I pressed N.

Carefully watch the upgrade process! In case a service needs to be restarted or the
system doesn't know what to do with new configuration files (e.g. you have custom
config file and the upgrade brings a new one, should it overwrite, keep original or let you
compare and merge manually?) You might be asked these kinds of questions.

$ sudo apt full-upgrade
...
...
...
149 upgraded, 90 newly installed, 19 to remove and 0 not upgraded.
Need to get 276 MB of archives.
After this operation, 625 MB of additional disk space will be used.
Do you want to continue? [Y/n]

Configuration file '/etc/sysctl.conf'
 ==> Modified (by you or by a script) since installation.
 ==> Package distributor has shipped an updated version.
 What would you like to do about it ? Your options are:
 Y or I : install the package maintainer's version
 N or O : keep your currently-installed version
 D : show the differences between the versions
 Z : start a shell to examine the situation
 The default action is to keep your current version.
*** sysctl.conf (Y/I/N/O/D/Z) [default=N] ?

or sshd_config changes

Now reboot and pray :)

Well, since I was using a 5.4 kernel from Debian 10 backports, instead of the default 4.19, I had to
explicitly confirm something during the boot process. Unfortunately, my VPS provider doesn't
provide me with access to the pre-boot environment and GRUB, therefore I wasn't able to boot.
Took them about a day to get the VPS up and running and even though I am now running Debian
11 which comes with 5.10, I still have the 5.4. Unless you have also installed backported kernel,
you should be already running Debian 11 with 5.10 without any troubles.

If we run sudo apt upgrade again, we can see a number of unused packages that can be remove.

$ sudo reboot

$ cat /etc/debian_version
11.0

The following packages were automatically installed and are no longer required:
 cpp-8 dh-python gir1.2-glib-2.0 golang-1.11 golang-1.11-doc golang-1.11-go golang-1.11-src libasan5 libdns-
export1104
 libfl2 libgirepository-1.0-1 libicu63 libidn11 libip4tc0 libip6tc0 libiptc0 libisc-export1100 libisl19 libjson-c3
 liblua5.2-0 libmatheval1 libmpdec2 libmpx2 libnftables0 libperl5.28 libpgm-5.2-0 libprocps7 libpython2-stdlib
 libpython2.7-minimal libpython2.7-stdlib libpython3.7 libpython3.7-dev libpython3.7-minimal libpython3.7-
stdlib
 libreadline7 perl-modules-5.28 python2 python2-minimal python2.7 python2.7-minimal python3-asn1crypto
python3-dbus
 python3-entrypoints python3-future python3-gi python3-jeepney python3-keyring python3-keyrings.alt
python3-mock
 python3-pbr python3-pycryptodome python3-secretstorage python3-xdg python3.7-minimal

https://selfhostedfuture.xyz/uploads/images/gallery/2021-09/Ihe902X1wOEzFdGZ-image-1631138059400.png

In order to do so, run

or use the purge option to remove configuration files of these packages as well

Use 'sudo apt autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

$ sudo apt autoremove

$ sudo apt --purge autoremove

That's it. Now make sure that everything works as expected, especially the services and
apps you are running. Again, in my case, both of the applications that I am running are
unable to start, guess that will take some more troubleshooting :) That's why you never try
this on production without prior testing.

Upgrading Debian kernel
(5.4 to 5.10)
I have recently upgraded one of my Debian servers from 10 to 11. The main issue I ran into was
the fact that the kernel was backported. This meant that when running Debian 10, the kernel was
newer than original (5.4 vs 4.19), but now that I have upgraded to Debian 11, which ships with 5.10
by default, I am now running older version than default. This is nothing to worry about, since the
5.4 is the 20th LTS (Long-Term-Support) release, meaning it will be supported up until December
2025. The sole reason why am I even doing this is to have the default and newest Debian kernel
and avoid having a FrankenDebian.

Check current version
First, check the current version of your kernel.

Update and upgrade
It is always recommended to update apt repositories and upgrade any pending packages.

Search apt
Issue a search query to apt to see which kernel versions are available in the default repository.

$ uname -r

5.4.0-74-generic

$ sudo apt update
$ sudo apt upgrade

$ apt-cache search linux-image | grep amd64

linux-headers-5.10.0-8-amd64 - Header files for Linux 5.10.0-8-amd64
linux-headers-5.10.0-8-cloud-amd64 - Header files for Linux 5.10.0-8-cloud-amd64
linux-headers-5.10.0-8-rt-amd64 - Header files for Linux 5.10.0-8-rt-amd64
linux-image-5.10.0-8-amd64-dbg - Debug symbols for linux-image-5.10.0-8-amd64
linux-image-5.10.0-8-amd64-unsigned - Linux 5.10 for 64-bit PCs

https://web.archive.org/web/20210903052449/https://wiki.debian.org/DontBreakDebian

Pick the right image and headers for you. In my case it is the linux-image-5.10.0-8-amd64 and linux-
headers-5.10.0-8-amd64

Install new kernel packages

In my case the system wanted/needed to install some additional packages as well, don't worry
about that too much right now, we can check what was installed later and possibly uninstall if we
want to.

The last lines of the installation should look like this:

linux-image-5.10.0-8-cloud-amd64-dbg - Debug symbols for linux-image-5.10.0-8-cloud-amd64
linux-image-5.10.0-8-cloud-amd64-unsigned - Linux 5.10 for x86-64 cloud
linux-image-5.10.0-8-rt-amd64-dbg - Debug symbols for linux-image-5.10.0-8-rt-amd64
linux-image-5.10.0-8-rt-amd64-unsigned - Linux 5.10 for 64-bit PCs, PREEMPT_RT
linux-image-amd64-dbg - Debugging symbols for Linux amd64 configuration (meta-package)
linux-image-amd64-signed-template - Template for signed linux-image packages for amd64
linux-image-cloud-amd64-dbg - Debugging symbols for Linux cloud-amd64 configuration (meta-package)
linux-image-rt-amd64-dbg - Debugging symbols for Linux rt-amd64 configuration (meta-package)
linux-image-5.10.0-8-amd64 - Linux 5.10 for 64-bit PCs (signed)
linux-image-5.10.0-8-cloud-amd64 - Linux 5.10 for x86-64 cloud (signed)
linux-image-5.10.0-8-rt-amd64 - Linux 5.10 for 64-bit PCs, PREEMPT_RT (signed)
linux-image-amd64 - Linux for 64-bit PCs (meta-package)
linux-image-cloud-amd64 - Linux for x86-64 cloud (meta-package)
linux-image-rt-amd64 - Linux for 64-bit PCs (meta-package)

$ sudo apt install linux-image-5.10.0-8-amd64 linux-headers-5.10.0-8-amd64

Setting up linux-headers-5.10.0-8-amd64 (5.10.46-4) ...
Setting up initramfs-tools-core (0.140) ...
Setting up initramfs-tools (0.140) ...
update-initramfs: deferring update (trigger activated)
Setting up linux-image-5.10.0-8-amd64 (5.10.46-4) ...
I: /vmlinuz.old is now a symlink to boot/vmlinuz-5.10.0-8-amd64
I: /initrd.img.old is now a symlink to boot/initrd.img-5.10.0-8-amd64
I: /vmlinuz is now a symlink to boot/vmlinuz-5.10.0-8-amd64
I: /initrd.img is now a symlink to boot/initrd.img-5.10.0-8-amd64
/etc/kernel/postinst.d/initramfs-tools:
update-initramfs: Generating /boot/initrd.img-5.10.0-8-amd64
Processing triggers for initramfs-tools (0.140) ...
update-initramfs: Generating /boot/initrd.img-5.10.0-8-amd64

Reboot to apply changes
Such a big change as upgrading the kernel requires the system to be rebooted. Until then, the
system will use the old kernel. Even in case the new kernel doesn't boot, you can still use the old
one, because the new was just installed alongside with the old.

$ sudo reboot

It is recommended to have access to the booloader (recovery) in case something goes
wrong. Procceed with caution if you have SSH access only.

You system should now reboot with the newest kernel. In my case, the VPS booted back to
the old kernel, probably because the provider has hard set it to boot only that specific
kernel. Consult your provider in case you have a VPS.

Upgrade Debian 10 to 11
(speedrun)

Update and upgrade existing
First update repos and upgrade any pending packages:

I had one pending Nginx update, so I will install it (I have done the same on another server already,
so I know the version is safe and doesn't break anything.) After the upgrade, Nginx has been
restarted automatically. You can check the current version with sudo nginx -v

Edit sources.list
Go to /etc/apt and edit sources.list (with elevated privileges).

Remove deb-src
I removed lines with deb-src , because I simply don't need them.

Change server location
Decided I wanted to change to a closer Debian mirror, so I replaced the old servers.

Update from new repos

Autoremove some packages

This is not supposed to be a quide, just a semi-public documentation of an update I
performed on one of my servers.

$ sudo apt update
$ sudo apt upgrade

$ sudo apt update

$ sudo apt autoremove

Add bullseye to sources.list
Replace all occurances of buster in /etc/apt/sources.list with bullseye . Don't forget new syntax on
debian-security line, which is now bullseye-security

Add Nginx
On this server, I have Nginx repo in /etc/apt/sources.list.d in nginx.list file. Again, replace buster with
bullseye .

Update and upgrade fully

This server had a default Debian 10 kernel, so the upgrade went smoothly. Unfortunately, it usually
isn't the system itself that breaks during the upgrade, but the services running on it. This time, it
was PHP. For whatever reason, the following happened:

PHP-FPM7.3 service got masked by systemd.
PHP commands in the command line stopped working.
Even though Debian 11's PHP version is 7.4, I still only had PHP 7.3 installed, but not
working.

$ sudo apt update

$ sudo apt upgrade --without-new-pkgs

$ sudo reboot

$ sudo apt full-upgrade

$ sudo apt autoremove

Fixed by installing PHP 7.4 from scratch and reinstalling the application depending on it.

