
Tips and tools
Edit /etc/passwd correctly
Create multiple parent directories with mkdir
Make a Linux VM template unique

Edit /etc/passwd correctly
In my recent guides, you might have noticed that I sometimes edit /etc/passwd directly with vi or
nano . This is not advised behavior. The main reason being the possibility of file corruption and
other users making changes to their account while you are editing. The latter is not very likely to
happen as I am the only user on the system. In any case, here's how to do it more properly.

Use vipw
vipw is a command line utility designed to make edits to the /etc/passwd file and prevents
corruption by setting appropriate locks. You will need elevated privileges to edit /etc/passwd .

It might ask you to pick an editor you want to use, usually nano or vi . Choose which one you
prefer and the file will open, ready to be edited. I usually do this to edit shell for a service user, but
do whatever you like.

$ sudo vipw

Create multiple parent
directories with mkdir
You have a directory /home/mydir and you want to create two new directories like this:
/home/mydir/backup/something

When you run mkdir /home/mydir/backup/something you will get an error:

Normally, you would have to make both directories separately like mkdir /home/mydir/backup
/home/mydir/backup/something

Add the -p flag (make parent directories along the way if needed) to fix it:

mkdir: cannot create directory ‘/home/mydir/backup/something’: No such file or directory

mkdir -p /home/mydir/backup/something

mkdir created both backup and something directory in the same path

Make a Linux VM template
unique
If you have ever worked with Virtual Machines (VMs), you are most likely familiar with the term "VM
cloning" or VM templates in general. It's a process of taking an existing VM with the operating
system installed and cloning it to create a new identical VM. This comes in handy when you are
tasked with creating multiple VMs for the same purpose or you want to achieve consistency across
your environment (same OS settings, FS layout etc.). All of this is possible without having to install
X number of VMs manually - you can just do it once and then clone the VM in a few clicks.

The problem with this time saving feature is that each VM is really identical. This may not seem
like a problem at a first glance - we wanted to make the VMs identical, right? Well, that's true, but
there's certain things that should not be kept the same. One of them is e.g SSH host keys - without
any further modification, you would have the same SSH host keys on all of your systems, which is
certainly not a good thing for security.

There's a couple of ways we can solve this - most commonly through Guest OS Customization
features of different hypervisors or with automation (cloud-init, ansible...). Most of the automation
stuff requires quite a bit of preparation and takes time. Guest OS customization is a great option, if
it's available, but doesn't solve everything either. Today, I'm going to show you a couple of things
that you should definitely do on each cloned system to make it "unique". The list may not include
everything ever, but has worked for me for quite some time.

Change hostname
Use the hostnamectl to change the hostname. The command may not return the new hostname
until reboot.

This example is based on Debian 12. The configuration may be different on other systems

sudo hostnamectl set-hostname new_hostname.domain

hostnamectl
 Static hostname: new_hostname.domain
 Icon name: computer-vm
 Chassis: vm ��
 Machine ID: XXXXXXXXXXXXXXXXXXXXXXXXXX
 Boot ID: XXXXXXXXXXXXXXXXXXXXXXXXXX

Fix /etc/hosts
Sometimes people forget that the hostname also lives in the hosts file and won't change on its
own.

Edit IP
You don't want to cause an IP collision on your network, so don't forget to give each system a
different IP and apply correct settings in the OS.

 Virtualization: kvm
Operating System: Debian GNU/Linux 12 (bookworm)
 Kernel: Linux 6.1.0-22-amd64
 Architecture: x86-64
 Hardware Vendor: QEMU
 Hardware Model: Standard PC _i440FX + PIIX, 1996_
Firmware Version: rel-1.16.2-0-prebuilt.qemu.org

vim /etc/hosts
127.0.0.1 localhost
192.168.0.20 new_hostname.domain new_hostname

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

sudo vim /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug ens18
iface ens18 inet static
 address 192.168.0.20/24

Change ID
This is the "Machine ID" you saw when running the hostnamectl command. You only want to
change the Machine ID, but not the Boot ID - that is usually assigned from the virtualization side
and is already unique (happens during cloning)

Change SSH keys
I found that the easiest way to do this is actually just reinstalling the whole SSH deamon using
purge (deletes all config). Or you can just not include SSH in the template and install it on each
system later.

 gateway 192.168.0.1
 # dns-* options are implemented by the resolvconf package, if installed
 dns-nameservers 8.8.8.8
 dns-search domain

sudo rm /etc/machine-id
sudo rm /var/lib/dbus/machine-id
sudo dbus-uuidgen --ensure=/etc/machine-id
sudo dbus-uuidgen --ensure

sudo apt purge openssh-server openssh-client
sudo apt install openssh-server openssh-client

Perform a reboot after all the changes above

